Journal of Mathematical Imaging and Vision

, Volume 20, Issue 1–2, pp 89–97

An Algorithm for Total Variation Minimization and Applications

  • Antonin Chambolle
Article

Abstract

We propose an algorithm for minimizing the total variation of an image, and provide a proof of convergence. We show applications to image denoising, zooming, and the computation of the mean curvature motion of interfaces.

total variation image reconstruction denoising zooming mean curvature motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Braides, Gamma-Convergence for Beginners, No. 22 in Oxford Lecture Series in Mathematics and Its Applications.Oxford University Press, 2002.Google Scholar
  2. 2.
    K.A. Brakke, The Motion of a Surface by its Mean Curva-ture, Vol. 20 of Mathematical Notes. Princeton University Press: Princeton, NJ, 1978.Google Scholar
  3. 3.
    J.L. Carter, "Dual methods for total variation-Based image restoration," Ph.D. thesis, U.C.L.A. (Advisor: T. F. Chan), 2001.Google Scholar
  4. 4.
    A. Chambolle, "An algorithm for mean curvature motion," to appear in Interfaces Free Bound.Google Scholar
  5. 5.
    A. Chambolle and P.-L. Lions, "Image recovery via total vari-ation minimization and related problems," Numer. Math.,Vol. 76, No. 2, pp. 167–188, 1997.Google Scholar
  6. 6.
    T.F. Chan, G.H. Golub, and P. Mulet, "A nonlinear primal-dual method for total variation-based image restoration," SIAM J. Sci. Comput.,Vol. 20, No.6, pp. 1964–1977, 1999 (electronic).Google Scholar
  7. 7.
    P.G. Ciarlet, EsIntroduction à l'analyse numèrique matricielle et à l'optimisation, Collection Mathèmatiques Appliquèes pour la Mâýtrise. [Collection of Applied Mathematics for the Master's Degree]. Masson: Paris, 1982.Google Scholar
  8. 8.
    P.L. Combettes and J. Luo, "An adaptive level set method for nondifferentiable constrained image recovery," IEEE Trans.Image Process.,Vol. 11, 2002.Google Scholar
  9. 9.
    F. Dibos and G. Koepfler, "Global total variation minimiza-tion," SIAM J. Numer. Anal.,Vol. 37, No. 2, pp. 646–664, 2000 (electronic).Google Scholar
  10. 10.
    D.C. Dobson and C.R. Vogel, "Convergence of an iterative method for total variation denoising," SIAM J. Numer. Anal., Vol. 34, No. 5, pp. 1779–1791, 1997.Google Scholar
  11. 11.
    I. Ekeland and R. Temam, Convex Analysis and Variational Problems. Amsterdam: North Holland, 1976.Google Scholar
  12. 12.
    E. Giusti, Minimal Surfaces and Functions of Bounded Varia-tion. Birkhäuser Verlag: Basel, 1984.Google Scholar
  13. 13.
    F. Guichard and F. Malgouyres, "Total variation based inter-polation," in Proceedings of the European Signal Processing Conference,Vol. 3, pp. 1741–1744, 1998.Google Scholar
  14. 14.
    J.-B. Hiriart-Urruty and C. Lemarèchal, Convex Analysis and Minimization Algorithms. I, II,Vol. 305–306 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag: Berlin, 1993 (two volumes).Google Scholar
  15. 15.
    Y. Li and F. Santosa, "Acomputational algorithm for minimizing total variation in image restoration," IEEE Trans. Image Process-ing, Vol. 5, pp. 987–995, 1996.Google Scholar
  16. 16.
    F. Malgouyres and F. Guichard, "Edge direction preserving im-age zooming: A mathematical and numerical analysis," SIAM J. Numer. Anal.,Vol. 39, No. 1, pp. 1–37, 2001 (electronic).Google Scholar
  17. 17.
    L.I. Rudin, S. Osher, and E. Fatemi, "Nonlinear total variation based noise removal algorithms," Physica D,Vol. 60, pp. 259–268, 1992.Google Scholar
  18. 18.
    J.A. Sethian, "Fast marching methods," SIAM Rev., Vol. 41, No. 2, pp. 199–235, 1999 (electronic).Google Scholar
  19. 19.
    C.R. Vogel and M.E. Oman, "Iterative methods for total varia-tion denoising," SIAM J. Sci. Comput.,Vol. 17, No. 1, pp. 227–238, 1996. Special issue on iterative methods in numerical linear algebra (Breckenridge, CO, 1994).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Antonin Chambolle
    • 1
  1. 1.CEREMADE–CNRS UMR 7534Université de Paris-DauphineParis Cedex 16France

Personalised recommendations