Advertisement

An Improved Force Field for O2, CO and CN Binding to Metalloporphyrins

  • Francisco Torrens
Article

Abstract

Parametrization of a molecular-mechanics program to include terms specific for five- and six-coordinate transition metal complexes is applied to heme complexes. The principal new feature peculiar to five and six coordination is a term that represents the effect of electron-pair repulsion modified by the ligand electronegativity and takes into account the different possible structures of complexes. The model system takes into account the structural differences of the fixing centre in the haemoglobin subunits. The customary proximal histidine is added. The macrocycle heme IX is wholly considered in our model. The calculations show clearly that certain conformations of heme IX–histidine models are much more favourable than others for fixing O2. From the O2 binding in haemoglobin and myoglobin and in simple Fe porphyrin models it is concluded that the bent O2 ligand is best viewed as bound superoxide, O2. Rotation of axial ligands are practically free. A small modification of the model in both crystal and protein matrix affects the orientation of the ligands in experimental systems.

CO/O2 discrimination electron-pair repulsion iron–porphyrin complex oxygen fixation polarizing molecular mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.F. Perutz: Proc. R. Soc. London, B 208, 135 (1980).Google Scholar
  2. 2.
    M.F. Perutz, G. Fermi, B. Luisi, B. Shaanan, and R.C. Liddington: Acc. Chem. Res. 20, 309 (1987).Google Scholar
  3. 3.
    K.G. Welinder: Curr. Opin. Struct. Biol. 2, 388 (1992).Google Scholar
  4. 4.
    B.G. Malmström: Chem. Rev. 90, 1247 (1990).Google Scholar
  5. 5.
    M. Sono, M.P. Roach, E.D. Coulter, and J.H. Dawson: Chem. Rev. 96, 2841 (1996).Google Scholar
  6. 6.
    J. Barber and B. Andersson: Nature (London) 370, 31 (1994).Google Scholar
  7. 7.
    C.L. Drennan, S. Huang, J.T. Drummond, R.G. Matthews, and M.L. Ludwig: Science 266, 1669 (1994).Google Scholar
  8. 8.
    M.A. Halcrow and G. Christou: Chem. Rev. 94, 2421 (1994).Google Scholar
  9. 9.
    M. Momenteau and C.A. Reed: Chem. Rev. 94, 659 (1994).Google Scholar
  10. 10.
    A. Dedieu, M.-M. Rohmer, and A. Veillard: Adv. Quantum Chem. 16, 43 (1982).Google Scholar
  11. 11.
    M.-M. Rohmer, A. Dedieu, and A. Veillard: Chem. Phys. 77, 449 (1983).Google Scholar
  12. 12.
    M.-M. Rohmer: Chem. Phys. Lett. 116, 44 (1985).Google Scholar
  13. 13.
    N. Li, Z. Su, P. Coppens, and J. Landrum: J. Am. Chem. Soc. 112, 7294 (1990).Google Scholar
  14. 14.
    T.G. Spiro and P.M. Kozlowski: J. Biol. Inorg. Chem. 2, 516 (1997).Google Scholar
  15. 15.
    T.G. Spiro and P.M. Kozlowski: J. Am. Chem. Soc. 120, 4524 (1998).Google Scholar
  16. 16.
    T. Vangberg, D.F. Bocian, and A. Ghosh: J. Biol. Inorg. Chem. 2, 526 (1997).Google Scholar
  17. 17.
    P. Jewsbury, S. Yamamoto, T. Minato, M. Saito, and T. Kitagawa: J. Am. Chem. Soc. 116, 11586 (1994).Google Scholar
  18. 18.
    P. Jewsbury, S. Yamamoto, T. Minato, M. Saito, and T. Kitagawa: J. Phys. Chem. 99, 12677 (1995).Google Scholar
  19. 19.
    A. Ghosh and D.F. Bocian: J. Phys. Chem. 100, 6363 (1996).Google Scholar
  20. 20.
    E. Sigfridsson and U. Ryde: J. Biol. Inorg. Chem. 4, 99 (1999).Google Scholar
  21. 21.
    C. Rovira, P. Ballone, and M. Parrinello: Chem. Phys. Lett. 271, 247 (1997).Google Scholar
  22. 22.
    C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello: J. Phys. Chem. A 101, 8914 (1997).Google Scholar
  23. 23.
    C. Rovira, K. Kunc, J. Hutter, P. Ballone, and M. Parrinello: Int. J. Quantum Chem. 69, 31 (1998).Google Scholar
  24. 24.
    C. Rovira and M. Parrinello: Chem. Eur. J. 5, 250 (1999).Google Scholar
  25. 25.
    C. Rovira, P. Carloni, and M. Parrinello: J. Phys. Chem. B 103, 7031 (1999).Google Scholar
  26. 26.
    R. Salzmann, M.T. McMahon, N. Godbout, L.K. Sanders, M. Wojdelski, and E. Oldfield: J. Am. Chem. Soc. 121, 3818 (1999).Google Scholar
  27. 27.
    N. Godbout, L.K. Sanders, R. Salzmann, R.H. Havlin, M. Wojdelski, and E. Oldfield: J. Am. Chem. Soc. 121, 3829 (1999).Google Scholar
  28. 28.
    G. Loew and M. Dupuis: J. Am. Chem. Soc. 118, 10584 (1996).Google Scholar
  29. 29.
    D.L. Harris and G.H. Loew: J. Am. Chem. Soc. 118, 10588 (1996).Google Scholar
  30. 30.
    D. Harris, G. Loew, and L. Waskell: J. Am. Chem. Soc. 120, 4308 (1998).Google Scholar
  31. 31.
    D.E. Woon and G.H. Loew: J. Phys. Chem. A 102, 10380 (1998).Google Scholar
  32. 32.
    O. Zakharieva, M. Grodzicki, A.X. Trautwein, C. Veeger, and I.M.C.M. Rietgens: J. Biol. Inorg. Chem. 1, 192 (1996).Google Scholar
  33. 33.
    M.T. Green: J. Am. Chem. Soc. 120, 10772 (1998).Google Scholar
  34. 34.
    G.B. Jameson, G.A. Rodley, W.T. Robinson, R.R. Gagne, C.A. Reed, and J.P. Collman: Inorg. Chem. 17, 850 (1978).Google Scholar
  35. 35.
    G.B. Jameson, F.S. Molinaro, J.A. Ibers, J.P. Collman, J.I. Brauman, E. Rose, and K.S. Suslick: J. Am. Chem. Soc. 102, 3224 (1980).Google Scholar
  36. 36.
    F. Maseras: New J. Chem. 22, 327 (1998).Google Scholar
  37. 37.
    J.-D. Maréchal, G. Barea, F. Maseras, A. Lledó s, L. Mouawad, and D. Pérahia: J. Comput. Chem. 21, 282 (2000).Google Scholar
  38. 38.
    R. Salzmann, C.J. Ziegler, N. Godbout, M.T. McMahon, K.S. Suslick, and E. Oldfield: J. Am. Chem. Soc. 120, 11323 (1998).Google Scholar
  39. 39.
    S. Han, K. Cho, and J. Ihm: Phys. Rev. E 59, 2218 (1999).Google Scholar
  40. 40.
    K. Kim, J. Fettinger, J.L. Sessler, M. Cyr, J. Hugdahl, J.P. Collman, and J.A. Ibers: J. Am. Chem. Soc. 111, 403 (1989).Google Scholar
  41. 41.
    M.P. Johansson, M.R.A. Blomberg, D. Sundholm, and M. Wikström: Biochim. Biophys. Acta 1553, 183 (2002).Google Scholar
  42. 42.
    M.P. Johansson, D. Sundholm, G. Gerfen, and M. Wikström: J. Am. Chem. Soc. 124, 11771 (2002).Google Scholar
  43. 43.
    F. Torrens, M. Ruiz-Ló pez, C. Cativiela, J.I. García, and J.A. Mayoral: Tetrahedron 48, 5209 (1992).Google Scholar
  44. 44.
    F. Torrens: Mol. Simul. 24, 391 (2000).Google Scholar
  45. 45.
    N.L. Allinger: J. Am. Chem. Soc. 99, 8127 (1977).Google Scholar
  46. 46.
    F. Torrens: Polyhedron 22, 1091 (2003).Google Scholar
  47. 47.
    B.T. Thole: Chem. Phys. 59, 341 (1981).Google Scholar
  48. 48.
    T.L. Hill: J. Chem. Phys. 16, 399 (1948).Google Scholar
  49. 49.
    J.A. Deiters, J.C. Gallucci, T.E. Clark, and R.R. Holmes: J. Am. Chem. Soc. 99, 5461 (1977).Google Scholar
  50. 50.
    H. Yow and L.S. Bartell: J. Mol. Struct. 15, 209 (1973).Google Scholar
  51. 51.
    F. Torrens: J. Phys. Org. Chem. 15, 742 (2002).Google Scholar
  52. 52.
    R.S. Mulliken: J. Chem. Phys. 2, 782 (1934).Google Scholar
  53. 53.
    J.E. Huheey: J. Phys. Chem. 69, 3284 (1965).Google Scholar
  54. 54.
    R.T. Sanderson: Science 114, 670 (1951).Google Scholar
  55. 55.
    R.S. Mulliken, C.A. Rieke, D. Orloff, and H. Orloff: J. Chem. Phys. 17, 1248 (1949).Google Scholar
  56. 56.
    C. Joachim, G. Treboux, and H. Tang: A model conformational flip-flop molecular switch. In Molecular Electronics: Science and Technology, AIP Conference Proceedings Vol. 262, AIP, New York (1992), pp. 107-117.Google Scholar
  57. 57.
    A.I. Vogel: J. Chem. Soc. 1833 (1948).Google Scholar
  58. 58.
    N. Gresh, P. Claverie, and A. Pullman: Int. J. Quantum Chem. Symp. 13, 243 (1979).Google Scholar
  59. 59.
    A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, and W.M. Skiff: J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
  60. 60.
    M. Momenteau, W.R. Scheidt, C.W. Eigenbrot, and C.A. Reed: J. Am. Chem. Soc. 110, 1207 (1988).Google Scholar
  61. 61.
    J.J. Weiss: Nature (London) 202, 83 (1964).Google Scholar
  62. 62.
    H.P. Misra and I. Fridovich: J. Biol. Chem. 247, 6960 (1972).Google Scholar
  63. 63.
    L. Pauling: Proc. Natl. Acad. Sci. USA 74, 2612 (1977).Google Scholar
  64. 64.
    M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, and J.J.P. Stewart: J. Am. Chem. Soc. 107, 3902 (1985).Google Scholar
  65. 65.
    R. Huber, O. Epp, and H. Formanek: J. Mol. Biol. 52, 349 (1970).Google Scholar
  66. 66.
    E.A. Padian and W.E. Love: J. Biol. Chem. 249, 4067 (1974).Google Scholar
  67. 67.
    J.C. Norvell, A.C. Nunes, and B.P. Schoenborn: Science 190, 568 (1975).Google Scholar
  68. 68.
    W.R. Scheidt and K. Hatano: Acta Crystallogr. Sect. C 47, 2201 (1991).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Francisco Torrens
    • 1
  1. 1.Institut Universitari de Ciència MolecularUniversitat de ValènciaBurjassot (València)Spain

Personalised recommendations