Journal of Insect Conservation

, Volume 7, Issue 4, pp 207–213 | Cite as

Pattern of genetic differentiation in two Isophya species (Orthoptera: Tettigonoidea) in north-east Hungary

  • Katalin PecsenyeEmail author
  • Edit Vadkerti
  • Zoltán Varga


Allozyme polymorphism was studied in two populations of Isophya kraussi and Isophya stysi. Both species are flightless and have low dispersal ability. As a consequence, we expected high level of genetic differentiation among their local populations. Samples were collected in three regions of Hungary. Enzyme polymorphism was investigated at 10 loci (Aldox, Est, Got, αGpdh, Hk, Idh, Mdh, Me, Pgi and Pgm) in both species. High levels of polymorphism were detected in all samples. αGpdh proved to be diagnostic as there were no common alleles in the two species. At four further loci (Got, Hk, Mdh and Me), the two species had one common allele together with one or more differentiating alleles. We detected high FIT values implying a high level of genetic variation. The positive FIS values suggested a tendency of heterozygote deficiency in both species. The highly significant overall FST values indicated clear genetic differentiation among the local populations. Thus our results confirmed the taxonomic status of these two species. The dendrogram constructed on the basis of Nei's genetic distances and the results of the PCA analyses fully confirmed those obtained by F-statistics.

Enzyme polymorphism Genetic differentiation Hungary Isophya 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard K., Hindar K., Pullin A.S., James C.H., Hammarstedt O., Balstad T. and Hanssen O. 2002. Phylogenetic relationships in brown argus butterflies (Lepidoptera: Lycaenidae: Aricia) from north-western Europe. Biol. J. Linn. Soc. 75: 27-37.Google Scholar
  2. Allegrucci G., Minasi M.G. and Sbordoni V. 1997. Patterns of gene flow and genetic structure in cave-dwelling crickets of the Tuscan endemic, Dolichopoda schiavazzii (Orthoptera, Rhaphidophoridae). Heredity 78: 665-673.Google Scholar
  3. Casgrain P. and Legendre P. 2001. The R package for multivariate and spatial analysis, Version 4.0 d5 User's manual. Web site 〈〉.Google Scholar
  4. Gilpin M.E. 1991. The genetic effective size of a metapopulation. Biol. J. Linn. Soc. 42: 165-175.Google Scholar
  5. Goudet J. 1995. FSTAT version 1.2: a computer program to calculate F-statistics. J. Heredity 86(6): 485.Google Scholar
  6. Guo S.W. and Thompson E.A. 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics 48: 367-372.Google Scholar
  7. Hanski I. and Gilpin M. 1991. Metapopulation dynamics: brief history and conceptual domain. Biol. J. Linn. Soc. 42: 3-16.Google Scholar
  8. Lewontin R.C. 1991. Electrophoresis in the development of evolutionary genetics: milestone or millstone. Genetics 128: 657-662.Google Scholar
  9. Matrajt M., Confaloineri V. and Vilardi J. 1996. Parallel adaptive patterns of allozyme and inversion polymorphisms on an ecological gradient. Heredity 76: 346-354.Google Scholar
  10. Meglécz E., Nèeve G., Pecsenye K. and Varga Z. 1999. Genetic variations in space and time in Parnassius mnemosyne (Lepidoptera) populations in northeast Hungary. Biol. Conserv. 89: 251-259.Google Scholar
  11. Morgan-Richards M., Trewick S.A. and Wallis G.P. 2000. Characterisation of a hybrid zone between two chromosomal races of the weta Hemideina thoracica following a geologically recent volcanic eruption. Heredity 85: 586-592.Google Scholar
  12. Nagy B. and Rácz I. 1996. Orthopteroid Insects in the Böukk Mountain. In: Mahunka S. (ed.), The Fauna of the Bökk National Park, Hungarian Natural History Museum, Budapest, pp. 95-123.Google Scholar
  13. Nagy B. and Szövényi G. 1999. A Körös-Maros Nemzeti Park állatföldrajzilag jellegzetes Orthoptera fajai és konzervációö-kológiai viszonyaik. Termèszetvèdelmi Közlemények 8: 137-160.Google Scholar
  14. Nei M. 1975. Molecular Population Genetics and Evolution. North-Holland Publishing Company, Amsterdam.Google Scholar
  15. Newton A.C., Allnutt T.R., Gilles A.C.M., Lowe A.J. and Ennos R.A. 1999. Molecular phylogeography, intraspeciphic variation and the conservation of tree species. TREE 14: 140-145.Google Scholar
  16. Opdam P. 1988. Populations in fragmented landscape. In: Schreiber K.F. (ed.), Connectivity in Landscape Ecology, Münstersche Geographische Arbeiten 29, Münster, pp. 75-77.Google Scholar
  17. Orci K.M. 2002. On the Bioacustics and Morphology of some Species-Groups of Orthoptera. PhD Thesis, Debrecen.Google Scholar
  18. Orr M.R., Porter A.H., Mousseau T.A. and Dingle H. 1994. Molecular and morphological evidence for hybridization between two ecologically distinct grasshoppers (Melanoplus sanguinipes and M. devastator) in California. Heredity 72: 42-54.Google Scholar
  19. Oudman L., Duijm M. and Landman W. 1990. Morphological and allozyme variation in the Ephippiger ephippiger complex (Orthoptera, Tettigonioidea). Netherlands J. Zool. 40(3): 454-483.Google Scholar
  20. Rácz I., Varga Z., Mezö H. and Parragh D. 1996. Studies on the Orthoptera fauna of the Aggtelek Karst. In: Tóth E. and Horváth R. (eds), Research in Aggtelek National Park and Biosphere Reserve II. ANP Füzetek 1. Aggtelek National Park, Aggtelek, pp. 99-107.Google Scholar
  21. Raácz A. 1998. Zoogeographical analysis of the Orthoptera fauna from the Bükk Mountains (N Hungary). Folia Entomologica Hungarica LIX: 5-16.Google Scholar
  22. Raymond M. and Rousset F. 1995a. An exact test for population differentation. Evolution 49: 1280-1283.Google Scholar
  23. Raymond M. and Rousset F. 1995b. GENEPOP ver.1.2, a population genetics software for exact tests and ecumenicism. J. Heredity 86: 246-249.Google Scholar
  24. Rolstad J.S. 1991. Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biol. J. Linn. Soc. 42: 123-134.Google Scholar
  25. Saura A., Lakovaara S., Lokki J. and Lankinen P. 1973. Genetic variation in central and marginal populations of Drosophila subobscura. Hereditas 75: 33-46.Google Scholar
  26. Settele J., Margules C., Poschlod P. and Henle K. (eds), 1996. Species Survival in Fragmented Landscapes.Kluwer, Dordrecht.Google Scholar
  27. Schmitt Th. and Seitz A. 2001. Intraspecific allozymatic differentiation reveals the glacial refugia and the postglacial expansions of European Erebia medusa (Lepidoptera: Nymphalidae). Biol. J. Linn. Soc. 74: 429-458.Google Scholar
  28. Sneath P.H. and Sokal R.R. 1973. Numerical Taxonomy, W.H. Freeman, San Francisco.Google Scholar
  29. Szövényi G., Nagy B. and Orci K.M. 2001. Isophya szöcskepopulációk Magyarországon. In: Isépy I., Korsós Z. and Papp L. (eds), II. Kárpát-medencei Biológiai Szimpózium. Magyar Biológiai Társaság and Magyar Természettudományi Múzeum, Budapest, pp. 255-258.Google Scholar
  30. Swofford D.L. and Selander R.B. 1981. Biosys-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Heredity 72: 281-283.Google Scholar
  31. Thomas C.D. 2000. Dispersal and extinction in fragmented landscapes. Proc. R. Soc. Lond. B 267: 139-145.Google Scholar
  32. Vogler A.P. and Desalle R. 1994. Diagnosing units of conservation management. Conserv. Biol. 8: 354-363.Google Scholar
  33. Weir B.S. 1990. Genetic Data Analysis. Sinauer Associates, Inc., Sunderland.Google Scholar
  34. Wright S. 1978. Evolution and theGenetics of Populations, vol. 4. Variability Within and Among Natural Populations. University of Chicago Press, Chicago.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Katalin Pecsenye
    • 1
    Email author
  • Edit Vadkerti
    • 2
  • Zoltán Varga
    • 1
  1. 1.Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenUSA
  2. 2.Department of Zootaxonomy and SynzoologyInstitute of Biology, University of PécsUSA

Personalised recommendations