Journal of Electroceramics

, Volume 12, Issue 3, pp 151–161

Pb(Mg1/3Nb2/3)O3 and (1 − x)Pb(Mg1/3Nb2/3)O3xPbTiO3 Relaxor Ferroelectric Thick Films: Processing and Electrical Characterization

  • S. Gentil
  • D. Damjanovic
  • N. Setter
Article

Abstract

The lead magnesium niobate [Pb(Mg1/3Nb2/3)O3 or PMN], and its solid solutions with lead titanate (PbTiO3 or PT), are of great interest because of their high electromechanical properties. At large PMN content, these materials exhibit relaxor characteristics with large electrostrictive strains and a large permittivity, while compositions near the morphotropic phase boundary present very interesting piezoelectric properties. So far, properties of these materials in ceramic, thin film and single-crystal form have been investigated. In this paper, we report on preparation and properties of pyrochlore free PMN and 0.65PMN-0.35PT thick films (thickness = 10 to 20 μm). The films were prepared from ethyl cellulose ink by screen printing on alumina substrate. The influence of various parameters, such as powder characteristics, inks formulation and films sintering conditions, on films densification are discussed. The dielectric and electromechanical properties of the films were examined. Relaxor-like behaviour was clearly demonstrated in PMN films. The maximum relative permittivity for PMN film was 10000 (at 0.1 kHz), which is lower than in bulk ceramics (17800 at 0.1 kHz) prepared under the same conditions. For 0.65PMN-0.35PT, the maximum relative permittivity was around 15500 against 24000 in the bulk. Several parameters, which might be responsible for the lower permittivity, are discussed. Poled 0.65PMN-0.35PT thick films exhibit relatively large piezoelectric response (d33 up to 200 pm/V) and unipolar strains approaching 0.1%, making these films of interest for various actuator and transducer applications.

PMN PMN-PT thick films relaxor piezoelectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Smolenskii and A.I. Agranovuskaya,Sov. Phys. Tech. Phys., 3,1380 (1958).Google Scholar
  2. 2.
    M.E. Lines and A.M. Glasss,Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press Oxford, (1977).Google Scholar
  3. 3.
    T.C. Reiley, J.V. Badding, D.A. Payne, and D.A. Chance,Mater. Res. Bull., 19, 1543 (1984).Google Scholar
  4. 4.
    T. Yamamoto, N. Iwase, M. Harata, and M. Segawa,Int. J. Hydbrid Microelectron, 12,156 (1989).Google Scholar
  5. 5.
    O. Noblanc, P. Gaucher, and G. Calvarin. J. Appl. Phys., 79(8),4291(1996).Google Scholar
  6. 6.
    R. Mass, M. Koch, N.R. Harris, N.M. White, and A.G.R. Evans,Materials letters., 31, 109(1997).Google Scholar
  7. 7.
    H.D. Chen, K.R. Udayakumar, L.E. Cross, J.J. Bernstein, and L.C. Niles,J. Appl. Phys., 77 (7), 3349 (1995).Google Scholar
  8. 8.
    Y. Akiyama, K. Yamanaka, E. Fujisawa, and Y. Kowata,Jpn. J. Appl. Phys., 38, 5524(1999).Google Scholar
  9. 9.
    T. Futakuchi, Y. Matsui, and M. Adachi,Jpn. J. Appl. Phys., 38, 5528 (1999).Google Scholar
  10. 10.
    T. Futakuchi and K. Tanino,Jpn. J. Appl. Phys., 34, 5207(1995).Google Scholar
  11. 11.
    S.J. Butcher and M. Daglish,Third Euro-Ceramics Conference Proceedings, 2, 121(1993).Google Scholar
  12. 12.
    E.S. Thiele and N. Setter,J. Am. Cera. Society., 83 (6), 1407 (2000).Google Scholar
  13. 13.
    J.B. Vechembre and G.R. Fox,J. Mater. Res., 16, 922 (2001).Google Scholar
  14. 14.
    A.L. Kholkin, C. Wütchrich, D. V. Taylor, and N. Setter,Rev. Sci. Instrum., 67, 1935 (1996).Google Scholar
  15. 15.
    P. Papet, J.P. Dougherty, and T.R. Shrout, J. Mater. Res., 5, 2902 (1990).Google Scholar
  16. 16.
    Z. Kighelman, D. Damjanovic, and N. Setter,J. Appl. Phys., 82(2), 1393 (2001).Google Scholar
  17. 17.
    V.G. Koukhar, N.A. Pertsev, and R. Waser,Phys. Rev., B 64, 214103 (2001).Google Scholar
  18. 18.
    A.D. Hilton, D.J. Barber, C.A. Randall, and T.R. Shrout,J. Mater. Sci., 25, 3461 (1990).Google Scholar
  19. 19.
    D. Damjanovic,Rep. Prog. Phys., 61, 1267 (1998).Google Scholar
  20. 20.
    S. Hiboux, P. Muralt, and T. Maeder,J. Mat. Res., 14, 4307 (1999).Google Scholar
  21. 21.
    E. M. Sabolsky, A.R. James, S.Kwon, S. Trolier-McKinstry, and G.L. Messing,Appl. Phys. Lett., 78, 2553 (2001).Google Scholar
  22. 22.
    D. Damjanovic,J. Appl. Phys., 82, 1788 (1997).Google Scholar
  23. 23.
    L.E. Cross, in Ferroelectric Ceramics, edited by N. Setter and E.L. Colla (Birkhäuser, Basel, 1993), pp. 1–86.Google Scholar
  24. 24.
    B. Jaffe, W.R. Cook, and H. Jaffe,Piezoelectric Ceramics(Academic, New York, 1971).Google Scholar
  25. 25.
    A.L. Kholkin, A.K. Tagantsev, E.C. Colla, D.V. Taylor, and N. Setter,Integrated Ferroelectrics, 15, 317 (1997).Google Scholar
  26. 26.
    S.E. Park and T.R. Shrout,J. Appl. Phys., 82,1804(1997).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Gentil
    • 1
  • D. Damjanovic
    • 1
  • N. Setter
    • 1
  1. 1.Ceramics Laboratory, Materials Institute, Faculty of EngineeringSwiss Federal Institute of Technology-EPFLSwitzerland

Personalised recommendations