Advertisement

Journal of Electroceramics

, Volume 12, Issue 1–2, pp 19–32 | Cite as

Electroceramic Thick Film Fabrication for MEMS

  • R.A. DoreyEmail author
  • R.W. Whatmore
Article

Abstract

The production of thick film elecroceramic films (10–100 μm thick) for micro-electromechanical system (MEMS) applications is of great interest due to the drive for miniaturisation, high power/sensitivity and system integration. This article gives a review of a range of techniques for the deposition and patterning of oxide ceramic thick films for use in MEMS and microsystems. Issues associated with sintering of films on a constraining substrate (including the use of sintering aids) are examined with a view to maximising the densification of the films. For completeness, brief descriptions of the thick film patterning techniques and typical dielectric and piezoelectric properties are given.

Due to the high piezoelectric properties of Pb containing electroceramics, and the drive for the use of silicon substrates, special attention has been given to the interactions that can occur between Si and Pb during processing of the elecroceramic thick films. Examples of Si/Pb system compatible electrode structures and diffusion barriers are given for completeness.

thick films electroceramics MEMS PZT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Whatmore, Ferroelectrics, 225, 179 (1998).Google Scholar
  2. 2.
    N. Setter, J.Euro.Ceram.Soc., 21, 1279 (2001).Google Scholar
  3. 3.
    R.W.Whatmore, Q. Zhang, Z. Huang, and R.A. Dorey, Materials Science in Semiconductor Processing, 5, 65 (2003).Google Scholar
  4. 4.
    M. Koch, A. Evans, and A. Bunnschweiler, Microfluidic, Technology and Applications(Research Studies Press Ltd., Baldock, Hertfordshire, England), p. 137.Google Scholar
  5. 5.
    Y. Jeon, Y.G. Seo, S.-J. Kim, and K. No, Integrated Ferroelectrics, 30, 91 (2000).Google Scholar
  6. 6.
    L. Simon, S. Le Dren, and P. Gonard, J. Euro. Ceram. Soc., 21, 1441 (2001).Google Scholar
  7. 7.
    P. Glynne-Jones, S.P. Beeby, P. Dargie, T. Papakostas, and N.M. White, Meas. Sci. Technol., 11, 526 (2000).Google Scholar
  8. 8.
    N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sensors and Actuators A, 105, 162 (2003).Google Scholar
  9. 9.
    Q.F. Zhou, H.L.W. Chen, and C.L. Choy, Thin Solid Films, 375, 95 (2000).Google Scholar
  10. 10.
    S. Le Dren, L. Simon, P. Gonnard, M. Troccaz, and A. Nicolas, Mat. Res. Bull., 35, 2037 (2000).Google Scholar
  11. 11.
    E.S. Thiele and N. Setter, J. Am. Ceram. Soc., 83, 1407 (2000).Google Scholar
  12. 12.
    N. Setter and R. Waser, Acta Mater., 48, 151 (2000).Google Scholar
  13. 13.
    E. Belloy, S. Thurre, E. Walckiers, A. Sayah, and M.A.M. Gijs, Sensors and Actuators, 84, 330 (2000).Google Scholar
  14. 14.
    D. Mlsenberg, Microelectronics Journal, 28, 419 (1997).Google Scholar
  15. 15.
    S.M. Spearing, Acta Mater., 48, 179 (2000).Google Scholar
  16. 16.
    E.S. Thiele, D. Damjanovic, and N. Setter, J. Am. Ceram. Soc., 84, 2863 (2001).Google Scholar
  17. 17.
    M. Kosec, D. Murko, J. Holc, B. Malic, M. Ceh, T. Haike, and H. Beige, Z. Metallkd., 92, 97 (2001).Google Scholar
  18. 18.
    O.M. Kanunnikova, F.Z. Gilmutdinov, and A.A. Shankov, International Journal of Hydrogen Storage, 27, 783 (2002).Google Scholar
  19. 19.
    Y. Jeon, J. Chung, and K. No, J. Electroceram., 4, 195 (2000).Google Scholar
  20. 20.
    S.P. Beeby, A. Blackburn, and N.M. White, J. Micromech. Microeng., 9, 218 (1999).Google Scholar
  21. 21.
    R.A. Dorey, S.B. Stringfellow, and R.W. Whatmore, J. Euro. Ceram. Soc., 22, 2921 (2002).Google Scholar
  22. 22.
    R. Maas, M. Koch, N.R. Harris, N.M. White, and A.G.R. Evans, Materials Letters, 31, 109 (1997).Google Scholar
  23. 23.
    M. Koch, N. Harris, R. Maas, A.G.R. Evans, N.M. White, and A. Brunnschweiler, Meas. Sci. Technol, 8, 49 (1997).Google Scholar
  24. 24.
    Y.B. Kim, T.S. Kim, K.S. Choi, and D.J. Choi, Integrated Ferroelectrics, 35, 199 (2001).Google Scholar
  25. 25.
    R.A. Dorey, R.W. Whatmore, S.P. Beeby, R.N. Torah, and N.M. White, Integrated Ferroelectrics, 54, 651 (2003).Google Scholar
  26. 26.
    F.F.C. Duval, R.A. Dorey, and R.W. Whatmore, Thin Solid Films, in press.Google Scholar
  27. 27.
    T. Futakuchi, K. Nakano, and M. Adachi, Jpn. J. Appl. Phys., 39, 5548 (2000).Google Scholar
  28. 28.
    S.A. Wilson, R.D. Haigh, J.E.A. Southin, R.A. Dorey, and R.W. Whatmore, Proceedings of Euspen 03, Aachen, Germany, 19-20 May (2003).Google Scholar
  29. 29.
    V. Farrari, D. Marioli, A. Taroni, and E. Ranucci, Sensors and Actuators B, 68, 81 (2000).Google Scholar
  30. 30.
    P.D. Hren, S.H. Rou, H.N. Al-Shareef, M.S. Ameen, O. Auciello, and A.I. Kingon, Integrated Ferroelectrics, 2, 311 (1992).Google Scholar
  31. 31.
    B. Wang, K.W. Kwok, HJ.L.W. Chan, C.L. Choy, K.Y. Tong, E.Z. Luo, J.B. Xu, and I.H.Wilson, Materials Characterisation, in press.Google Scholar
  32. 32.
    S.-Y. Tzeng and J.-H. Jean, J. Am. Ceram. Soc., 85, 335 (2002).Google Scholar
  33. 33.
    Y. Zhau and L.R. Dharani, Thin Solid Films, 245, 109 (1994).Google Scholar
  34. 34.
    M. Stech P. Reynders, and J. Rodel, J. Am. Ceram. Soc., 83, 1889 (2000).Google Scholar
  35. 35.
    M. Kosec, J. Holc, B. Malic, and V. Bobnar, J. Euro. Ceram. Soc., 19, 949 (1999).Google Scholar
  36. 36.
    R.K. Bordia and R. Raj, J. Am. Ceram. Soc., 68, 287 (1985).Google Scholar
  37. 37.
    R.K. Bordia and A. Jagota, J. Am. Ceram. Soc., 76, 2475 (1993).Google Scholar
  38. 38.
    T.J. Garino and H.K. Bowen, J. Am. Ceram. Soc., 70, C315 (1987).Google Scholar
  39. 39.
    T. Mitsui, M. Marutake, and E. Sawaguch, in Landolt-B¨ornstein Numerical Data and Functional Relationships in Science and Technology, Vol. 9, Suppliment and Extansion tovol. 3, Ferroand Antiferroelectric Substances, edited by K.-H. Hellwege and A.M. Hellwege (Springer-Verlag, Berlin, 1975), p. 309.Google Scholar
  40. 40.
    D. Berlingcourt, H.H.A. Krueger, and C. Near, in Technical Publication TP-226, Properties of Piezoelectricity Ceramics(Morgan Electro Ceramics, www.morgan-electroceramics.com).Google Scholar
  41. 41.
    Y. Okada and Y. Tokumara, J. App. Phys., 56, 314 (1984).Google Scholar
  42. 42.
    G. De Cicco, B. Morton, D. Dalmonego, and M. Prudenziati, Sensors and Actuators, 76, 409 (1999).Google Scholar
  43. 43.
    M. Prudenziati, B. Morten, and De Cicco, Microelectronics International, 38, 5 (1995).Google Scholar
  44. 44.
    D.L. Corker, Q. Zhang, R.W. Whatmore, and C. Perrin, J. Euro. Ceram. Soc., 22, 383 (2002).Google Scholar
  45. 45.
    D.L. Corker, R.W. Whatmore, E. Ringgaard, and W.W. Wolney, J. Euro. Ceram. Soc., 20, 2039 (2000).Google Scholar
  46. 46.
    P. Tran-Huu-Hue, F. Levassort, F.V. Meulen, J. Holc, M. Kosec, and M. Lethiecq, J. Euro. Ceram. Soc., 21, 1445 (2001).Google Scholar
  47. 47.
    T. Hayashi, T. Inoue, and Y. Akiyama, J. Euro. Ceram. Soc., 19, 999 (1999).Google Scholar
  48. 48.
    F.F.C. Duval, R.A. Dorey, Q. Zhang, and R.W. Whatmore, J. Euro. Ceram. Soc., 23, 1935 (2003).Google Scholar
  49. 49.
    X.X.Wang, K. Murakami, O. Sugiyama, and S. Kaneko, J. Euro. Ceram. Soc., 21, 1367 (2001).Google Scholar
  50. 50.
    C. Lucat, F. Menil, and R. Von Der Muhll, Meas. Sci. Technol., 8, 38 (1997).Google Scholar
  51. 51.
    T. Sweeney, Ph.D. Thesis, Cranfield University, UK (1998).Google Scholar
  52. 52.
    M.-C. Wang, M.-S. Huang, and N.-C.Wu, J. Euro. Ceram. Soc., 21, 695 (2001).Google Scholar
  53. 53.
    J. Van Tassel and C.A. Randall, J. Euro. Ceram. Soc., 19, 955 (1999).Google Scholar
  54. 54.
    M. Prudenziati, Thick Film Sensors(Elsevier, NL, 1994, ISBN 0444897232), p. 113.Google Scholar
  55. 55.
    Y. Jeon, Y.G. Seo, S.-J. Kim, and K. No, Integrated Ferroelectrics, 30, 91 (2000).Google Scholar
  56. 56.
    K. Kakegawa, T. Kato, and Y. Sasaki, J. Euro. Ceram. Soc., 20, 1599 (2000).Google Scholar
  57. 57.
    D.A. Barrow, T.E. Petroff, R.P. Tandon, and M. Sayer, J. Appl. Phys., 81, 876 (1997).Google Scholar
  58. 58.
    D.A. Barrow, T.E. Petroff, and M. Sayer, Surface and Coatings Technology, 76/77, 113 (1995).Google Scholar
  59. 59.
    M. Lukacs, M. Sayer, and S. Foster, Integrated Ferroelectrics, 24, 95 (1999).Google Scholar
  60. 60.
    A.L. Kholkin, V.K. Yarmarkin, A. Wu, P.M. Vilarinho, and J.L. Baptista, Integrated Ferroelectrics, 30, 245 (2000).Google Scholar
  61. 61.
    T. Olding, M. Sayer, and D. Barrow, Thin Solid Films, 398/399, 581 (2001).Google Scholar
  62. 62.
    M. Kobayashi, T.R. Golding, M. Sayer, and C.-K. Jen, Ultrasonics, 39, 675 (2002).PubMedGoogle Scholar
  63. 63.
    T. Tsurumi, S. Ozawa, G. Abe, N. Ohashi, S. Wada, and M. Yamane, Jpn. J. Appl. Phys., 39, 5604 (2000).Google Scholar
  64. 64.
    H.J. Kim, Y.-B. Kim, J.-Y. Kang, and T.S. Kim, Integrated Ferroelectrics, 50, 11 (2002).Google Scholar
  65. 65.
    J. Ma and W. Cheng, J. Am. Ceram. Soc., 85, 1735 (2002).Google Scholar
  66. 66.
    T.G. Sweeney and R.W. Whatmore, Ferroelectrics, 187, 57 (1996).Google Scholar
  67. 67.
    B. Su, C.B. Ponton, and T.W. Button, J. Euro. Ceram. Soc., 21, 1539 (2001).Google Scholar
  68. 68.
    P. Sarkar and P.S. Nicholson, J. Am. Ceram. Soc., 79, 1987 (1996).Google Scholar
  69. 69.
    B.H. King, D. Dimos, P. Yang, and S.L. Morissette, J. Electroceramics, 3, 173 (1999).Google Scholar
  70. 70.
    S.L. Morissette, J.A. Lewis, P.G. Clem, J. Cesarano III, and D.B. Dimos, J. Am. Ceram. Soc., 84, 2462 (2001).Google Scholar
  71. 71.
    K.A.M. Seerden, N. Reis, J.R.G. Evans, P.S. Grant, J.W. Halloran, and B. Derby, J. Am. Ceram. Soc., 84, 2514 (2001).Google Scholar
  72. 72.
    P.F. Blazdell and J.R.G. Evans, J. Mater. Proc. Tech., 99, 94 (2000).Google Scholar
  73. 73.
    J.A. Lewis, Current Opinion in Solid State and Materials Science, 6, 245 (2002).Google Scholar
  74. 74.
    X. Zhao, J.R.G. Evans, and M.J. Edirisinghe, J. Am. Ceram. Soc., 85, 2113 (2002).Google Scholar
  75. 75.
    X. Zhao, J.R.G. Evans, M.J. Edirisinghe, and J.H. Song, J. Mater. Sci., 37, 1987 (2002).Google Scholar
  76. 76.
    X.N. Jiang, C. Sun, Z. Zhang, B. Xu, and Y.H. Ye, Sensors and Actuators, 87, 72 (2000).Google Scholar
  77. 77.
    X. Zhang, X.N. Jiang, and C. Sun, Sensors and Actuators, 77, 149 (1999).Google Scholar
  78. 78.
    M. Farsari, F. Claret-Tournier, S. Huang, C.R. Chatwin, D.M. Budgett, P.M. Birch, R.C.D. Young, and J.D. Richardson, J. Mater. Proc. Tech., 107, 167 (2000).Google Scholar
  79. 79.
    D. Guo, K. Cai, C. Nan, L. Li, and Z. Gui, Scripta Mater., 47, 383 (2002).Google Scholar
  80. 80.
    J.M. Hale and B. de Poumeyrol, Proc. Ferroelectrics UK 2000, 205 (2000), ISBN 1-86125-135-1.Google Scholar
  81. 81.
    M.-A. Dubois and P. Muralt, Sensors and Actuators, 77, 106 (1999).Google Scholar
  82. 82.
    R.A. Dorey and R.W. Whatmore, Integrated Ferroelectrics, 50, 111 (2002).Google Scholar
  83. 83.
    J.F. Shepard Jr, P.J. Moses, and S. Trolier-McKinstry, Sensors and Actuators A, 71, 133 (1998).Google Scholar
  84. 84.
    J.E.A. Southin, S.A. Wilson, S. Schmitt, and R.W. Whatmore, J. Phys. D: Appl. Phys., 34, 1446 (2001).Google Scholar
  85. 85.
    R.A. Miller and J.J. Bernstein, Integrated Ferroelectrics, 29, 225 (2000).Google Scholar
  86. 86.
    H. Wensink and M.C. Elenspoek, Sensors and Actuators A, 102, 157 (2002).Google Scholar
  87. 87.
    H. Wensink, H.V. Jansen, J.W. Berenschot, and M.C. Elwenspoek, 10, 175 (2000).Google Scholar
  88. 88.
    R.D. Haigh (2003), Private Communication.Google Scholar
  89. 89.
    A.L. Kholkin, V.K. Yarmarkin, A. Wu, M. Avdeev, P.M. Vilarinho, and J.L. Baptista, J. Euro. Ceram. Soc., 21, 1535 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Nanotechnology Group, School of Industrial and Manufacturing ScienceCranfield UniversityCranfieldUK

Personalised recommendations