Journal of Electroceramics

, Volume 12, Issue 1–2, pp 7–17 | Cite as

Thin Film Piezoelectrics for MEMS

  • S. Trolier-McKinstry
  • P. Muralt
Article

Abstract

Thin film piezoelectric materials offer a number of advantages in microelectromechanical systems (MEMS), due to the large motions that can be generated, often with low hysteresis, the high available energy densities, as well as high sensitivity sensors with wide dynamic ranges, and low power requirements. This paper reviews the literature in this field, with an emphasis on the factors that impact the magnitude of the available piezoelectric response. For non-ferroelectric piezoelectrics such as ZnO and AlN, the importance of film orientation is discussed. The high available electrical resistivity in AlN, its compatibility with CMOS processing, and its high frequency constant make it especially attractive in resonator applications. The higher piezoelectric response available in ferroelectric films enables lower voltage operation of actuators, as well as high sensitivity sensors. Among ferroelectric films, the majority of the MEMS sensors and actuators developed have utilized lead zirconate titanate (PZT) films as the transducer. Randomly oriented PZT films show piezoelectric e31,f coefficients of about −7 C/m2 at the morphotropic phase boundary. In PZT films, orientation, composition, grain size, defect chemistry, and mechanical boundary conditions all impact the observed piezoelectric coefficients. The highest achievable piezoelectric responses can be observed in {001} oriented rhombohedrally-distorted perovskites. For a variety of such films, e31,f coefficients of −12 to −27 C/m2 have been reported.

piezoelectrics MEMS thin films orientation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.D. Bannon, J.R. Clark, and C.T.C. Nguyen, IEEE J. Sol. State Circuits, 35(4), 512 (2000).Google Scholar
  2. 2.
    L.W. Lin, R.T. Howe, and A.P. Pisano, J. MEMS, 7(3), 286 (1998).Google Scholar
  3. 3.
    L. Pescini, H. Lorenz, and R.H. Blick, Appl. Phys. Lett. 82(3), 352 (2003).Google Scholar
  4. 4.
    M.A. Abdelmoneum, M.U. Demirci, and C.T.-C. Nguyen, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE, 698 (2003).Google Scholar
  5. 5.
    Y. Ito, K. Kushida, K. Sugawara, and H. Takeuchi, IEEETUFFC, 42, 316 (1995).Google Scholar
  6. 6.
    M.A. Dubois and P. Muralt, Appl. Phys. Lett., 74, 3032 (1999).Google Scholar
  7. 7.
    S.H. Kim, J.H. Kim, H.D. Park, and G.W. Yoon, J. Vac. Sci. Tech.B, 19, 1164 (2001).Google Scholar
  8. 8.
    M. Umeda, K. Nakamura, and S. Ueha, Jpn. J. Appl. Phys. Part 1, 36(5B), 3146 (1997).Google Scholar
  9. 9.
    G.W. Taylor, J.R. Burns, S.M. Kammann, W.B. Powers, and T.R. Welsh, IEEE J. Ocean. Eng., 26(2), 539 (2001).Google Scholar
  10. 10.
    G.K. Ottman, H.F. Hofmann, and G.A. Lesieutre, IEEE Trans. Power Electron., 18(2), 696 (2003).Google Scholar
  11. 11.
    P. Glynne-Jones, S.P. Beeby, and N.M. White, IEE Proc. Sci. Meas. Tech. 148(2) 68 (2001).Google Scholar
  12. 12.
    J.J. Bernstein, S.L. Finberg, K. Houston, L.C. Niles, H.D. Chen, L.E. Cross, K.K. Li, and K. Udayakumar, IEEE Trans. UFFC, 44, 960 (1997).Google Scholar
  13. 13.
    Y. Nemirovsky, A. Nemirovsky, P. Muralt, and N. Setter, Sen. and Act., A56, 239 (1996).Google Scholar
  14. 14.
    P. Muralt, M. Kohli, T. Maeder, A. Kolkin, K. Brooks, N. Setter, and R. Luthier, Sen. and Act., A48, 157 (1995).Google Scholar
  15. 15.
    P. Muralt, IEEE Trans. UFFC, 47(4), 903 (2000).Google Scholar
  16. 16.
    D.L. Polla and L.F. Francis, MRS Bulletin, 21(7), 59 (1996).Google Scholar
  17. 17.
    L.-P.Wang, K. Deng, L. Zou, R. Wolf, R.J. Davis, and S. Trolier-McKinstry, IEEE Electron Device Lett., 23, 182 (2002).Google Scholar
  18. 18.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices(Clarendon Press, Oxford, 1979).Google Scholar
  19. 19.
    T. Ikeda, Fundamentals of Piezoelectricity(Oxford University Press, New York, 1996).Google Scholar
  20. 20.
    R.M. White and V.W. Voltmer, Appl. Phys. Lett., 17, 314 (1965).Google Scholar
  21. 21.
    K. Tsubouchi and N. Mikoshiba, IEEE Trans. Son. Ultrasonics, 32, 634 (1985).Google Scholar
  22. 22.
    H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo, K. Higaki, S. Fujii, Y. Seki, K. Yoshida, and S. Shikata, Jpn. J. Appl. Phys. Pt 1, 372918 Sp. Iss. SI (1998).Google Scholar
  23. 23.
    G.F. Iriarte, J. Appl. Phys., 93, 9604 (2003).Google Scholar
  24. 24.
    I. Cerven, T. Lacko, I. Novotny, V. Tvarozek, and M. Harvanka, J. Cryst. Growth, 131(3/4), 546 (1993).Google Scholar
  25. 25.
    J.G. Smits and W.S. Choi, IEEE TUFFC, 38(3), 256 (1991).Google Scholar
  26. 26.
    Q. Meng, M. Mehregany, and K. Deng, J. Micromech. Microeng., 3, 18 (1993).Google Scholar
  27. 27.
    Ph. Luginbuhl, G.-A. Racine, Ph. Lerch, B. Romanowicz, K.G. Brooks, N.F. de Rooij, Ph. Renaud, and N. Setter, Int. Conf. Solid-State Sens. Act., Proc., 1, 413 (1995).Google Scholar
  28. 28.
    T. Fabula, H. Wagner, B. Schmidt, and S. Buttgenbach, Sens. Act. A, 42(1-3), 375 (1994).Google Scholar
  29. 29.
    F.S. Hickernell, Proc. IEEE, 64, 631 (1976).Google Scholar
  30. 30.
    A. Rodriguez-Navarro, W. Otano-Rivera, J.M. Garcia-Ruiz, and R. Messier, J. Mater. Res., 12, 1850 (1997).Google Scholar
  31. 31.
    M.A. Dubois and P. Muralt, Appl. Phys. Lett., 74(20), 3032 (1999).Google Scholar
  32. 32.
    F.J. Hickernell, R.X. Yue, and F.S. Hickernell, IEEE Trans. UFFC, 44, 615 (1997).Google Scholar
  33. 33.
    H.P. Loebl, C. Metzmacher, R.F. Milsom, P. Lok, F. van Straten, and A. Tuinhout, J. Electroceramics, forthcoming issue.Google Scholar
  34. 34.
    M.-A. Dubois and P. Muralt, J. Appl. Phys., 89, 6389 (2001).Google Scholar
  35. 35.
    A. Barker, S. Crowther, and D. Rees, Sensors & Actuators, 58, 229 (1997).Google Scholar
  36. 36.
    A.L. Kholkin, C. Wutchrich, D.V. Taylor, and N. Setter, Rev. Sci. Instrum., 67(5), 1935 (1996).Google Scholar
  37. 37.
    J.F. Shepard, Jr., P.J. Moses, and S. Trolier-McKinstry, Sens. Actuators A, 71, 133 (1998).Google Scholar
  38. 38.
    M.A. Dubois and P. Muralt, Sens. Act. A, 77(20), 106 (1999).Google Scholar
  39. 39.
    F.J. von Preissig, H. Zeng, and E.S. Kim, Smart Mater. Struct., 7, 396 (1998).Google Scholar
  40. 40.
    J.G. Gualtieri, J.A. Kosinski, and A. Ballato, Trans. UFFC, 41, 53 (1994).Google Scholar
  41. 41.
    G. Carlotti, G. Socino, A. Petri, and E. Verona, Proc. 1987 IEEE Ultrason. Symp.(Oct. 1987), p. 295.Google Scholar
  42. 42.
    K. Tsubouchi, K. Sugai, and N. Mikoshiba, IEEE Ultrason. Symp., Oct. 1981, p. 375.Google Scholar
  43. 43.
    N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, and N. Setter, Sens. Act. A, 105, 162 (2003).Google Scholar
  44. 44.
    D. Peroulis, S.P. Pacheco, K. Sarabandi, and L.P.B. Katehi, IEEE Trans. Microwav. Theory Tech., 51(10), 259 (2003).Google Scholar
  45. 45.
    F. Xu, S. Trolier-McKinstry, W. Ren, and B. Xu, J. Appl. Phys., 89(2), 1336 (2001).Google Scholar
  46. 46.
    K. Saito, T. Kurosawa, T. Akai, T. Oikawa, and H. Funakubo, J. Appl. Phys., 93(1), 545 (2003).Google Scholar
  47. 47.
    X.H. Du, J.H. Zheng, U. Belegundu, and K. Uchino, Appl. Phys. Lett., 72(19), 2421 (1998).Google Scholar
  48. 48.
    S.-E. Park and T.R. Shrout, IEEE Trans. UFFC, 44, 1140 (1997).Google Scholar
  49. 49.
    B. Noheda, D.E. Cox, G. Shirane, R. Guo, B. Jones, and L.E. Cross, Phys. Rev. B, 63(1), 014103 (2001).Google Scholar
  50. 50.
    H.D. Chen, K.R. Udayakumar, C.J. Gaskey, and L.E. Cross, Appl. Phys. Lett., 67(23), 3411 (1995).Google Scholar
  51. 51.
    A. Seifert, N. Ledermann, S. Hiboux, J. Baborowski, P. Muralt, and N. Setter, Integr. Ferro., 35(1-4), 1889 (2001).Google Scholar
  52. 52.
    F. Xu, R.A. Wolf, T. Yoshimura, and S. Trolier-McKinstry, Proc. 11th Int. Symp. Electrets, 386 (2002).Google Scholar
  53. 53.
    R.A.Wolf and S. Trolier McKinstry, J. Appl. Phys., 95(3), 1397 (2004).Google Scholar
  54. 54.
    T. Haccart, C. Soyer, E. Cattan, and D. Remiens, Ferroelectrics, 254(1-4), 185 (2001).Google Scholar
  55. 55.
    I. Kanno, H. Kotera, K. Wasa, T. Matsunaga, T. Kamada, and R. Takayama, J. Appl. Phys., 93(7), 4091 (2003).Google Scholar
  56. 56.
    D.-J. Kim, J.-P. Maria, A.I. Kingon, and S.K. Streiffer, J. Appl. Phys., 93, 5568 (2003).Google Scholar
  57. 57.
    R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, and S.E. Park, Jpn. J. Appl. Phys. Part 1, 40(10), 5999 (2001).Google Scholar
  58. 58.
    T.R. Shrout, Private Communication (2002).Google Scholar
  59. 59.
    K. Kakimoto, H. Kakemoto, S. Fujita, and Y. Masuda, J. Am. Ceram. Soc., 85(4), 1019 (2002).Google Scholar
  60. 60.
    B.A. Tuttle, T.J. Garino, J.A. Voight, T.J. Headley, D. Dimos, and M.O. Eatough, Science and Technology of Electroceramic Thin Films, edited by O. Auciello and R. Waser, Kluwer Academic Publishers, The Netherlands, 117 (1995).Google Scholar
  61. 61.
    A.L. Kholkin, M.L. Calzada, P. Ramos, J. Mendiola, and N. Setter, Appl. Phys. Lett., 69, 3602 (1996).Google Scholar
  62. 62.
    P. Muralt, J. Micromech. Microeng., 10, 136 (2000).Google Scholar
  63. 63.
    K.G. Brooks, I.A. Reaney, R. Klissurska, Y. Huang, L. Bursill, and N. Setter, J. Mater. Res., 9, 2540 (1994).Google Scholar
  64. 64.
    S.-Y. Chen and I.-W. Chen, J. Amer. Cer. Soc., 77, 2337 (1994).Google Scholar
  65. 65.
    R.W. Whatmore, Q. Zhang, Z. Huang, and R.A. Dorey, Materials Science in Semiconductor Processing, 5, 65 (2003).Google Scholar
  66. 66.
    J.H. Park, F. Xu, and S. Trolier-McKinstry, J. Appl. Phys., 89(1), 568 (2001).Google Scholar
  67. 67.
    D.M. Kim, S.D. Bu, C.B. Eom, S. K. Streiffer, W. Tian, X.Q. Pan, T. Yoshimura, S. Trolier-McKinstry, D.G. Schlom, V. Nagurajan, A. Stanishev-Sky, J. Ouyang, R. Ramash, W. Tian, and X.Q. Pan, unpublished.Google Scholar
  68. 68.
    T. Yoshimura and S. Trolier-McKinstry, Integr. Ferroelectr., 50, 33 (2002).Google Scholar
  69. 69.
    A.J. Bell, J. Appl. Phys., 89(7), 3907 (2001).Google Scholar
  70. 70.
    Q.Q. Zhang, Q.F. Zhou, and S. Trolier-McKinstry, Appl. Phys. Lett., 80(18), 3370 (2002).Google Scholar
  71. 71.
    Q.F. Zhou, Q.Q. Zhang, and S. Trolier-McKinstry, J. Appl. Phys., 94(5) 3397 (2003).Google Scholar
  72. 72.
    Z. Zhang, J.-H. Park, and S. Trolier-McKinstry, MRS. Proc. 596 Ferroelectric Thin Films VIII, edited by R.W. Schwartz, P.C. McIntyre, Y. Miyasaka, S.R. Summerfelt, and D. Wouters, Materials Research Society, Warrendale, PA, 73, (2000).Google Scholar
  73. 73.
    J.P. Maria, Ph.D. Thesis, The Pennsylvania State University (1998).Google Scholar
  74. 74.
    J.F. Shepard Jr., S. Trolier-McKinstry, M. Hendrickson, and R. Zeto, MRS Proc. 459: Materials for Smart Systems II, 47 (1997).Google Scholar
  75. 75.
    N. Kim, Ph. D. Thesis, The Pennsylvania State University (1994).Google Scholar
  76. 76.
    F. Jona and G. Shirane, Ferroelectric Crystals(Pergamon Press, New York, 1962).Google Scholar
  77. 77.
    T.M. Shaw, S. Trolier-McKinstry, and P.C. McIntyre, Ann. Rev. Mater. Sci., 30, 263 (2000).Google Scholar
  78. 78.
    T. Yoshimura and S. Trolier-McKinstry, J. Appl. Phys., 92(7), 3979 (2002).Google Scholar
  79. 79.
    J. Nino, T. Yoshimura, and S. Trolier-McKinstry, J. Mat. Res.(2003), submitted.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. Trolier-McKinstry
    • 1
  • P. Muralt
    • 2
  1. 1.Materials Research Institute and Materials Science and Engineering DepartmentPenn State UniversitySwitzerland
  2. 2.Ceramics LaboratorySwiss Federal Institute of Technology EPFLLausanneSwitzerland

Personalised recommendations