Advertisement

Journal of Electroceramics

, Volume 11, Issue 1–2, pp 5–66 | Cite as

Ferroelectric Materials for Microwave Tunable Applications

  • A.K. Tagantsev
  • V.O. Sherman
  • K.F. Astafiev
  • J. Venkatesh
  • N. Setter
Article

Abstract

A review of the properties of ferroelectric materials that are relevant to microwave tunable devices is presented: we discuss the theory of dielectric response of tunable bulk materials and thin films; the experimental results from the literature and from own work are reviewed; the correspondence between the theoretical results and the measured properties of tunable materials is critically analyzed; nominally pure, real (defected), and composite bulk materials and thin films are addressed. In addition, techniques for characterization of tunable ferroelectrics and applications of these materials are briefly presented.

microwave ferroelectrics tunability dielectric loss tunable materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Domenico, D.A. Johnson, and R.H. Pantell, Journal of Applied Physics, 33, 1697 (1962).Google Scholar
  2. 2.
    O.G. Vendik, E.K. Hollmann, A.B. Kozyrev, and A.M. Prudan, Journal of Superconductivity, 12, 325 (1999).Google Scholar
  3. 3.
    M.J. Lancaster, J. Powell, and A. Porch, Supercund. Sci. Technol., 11, 1323 (1998).Google Scholar
  4. 4.
    X.X. Xi, H.C. Li, W.D. Si, A.A. Sirenko, I.A. Akimov, J.R. Fox, A.M. Clark, and J.H. Hao, Journal of Electroceramics, 4, 393 (2000).Google Scholar
  5. 5.
    F.A. Miranda, F.W. Van Keuls, R.R. Romanofsky, C.H. Mueller, S. Alterovitz, and G. Subramanyam, Integrated Ferroelectrics, 42, 131 (2001).Google Scholar
  6. 6.
    V.L. Gurevich and A.K. Tagantsev, Adv. Phys., 40, 719 (1991).Google Scholar
  7. 7.
    S. Gevorgian, E. Carlsson, E. Wikborg, and E. Kollberg, Intergrated Ferroelectrics, 22, 245 (1998).Google Scholar
  8. 8.
    S.A. Wolf and D. Treger, Integrated Ferroelectrics, 42, 39 (2001).Google Scholar
  9. 9.
    O.G. Vendik, Ferroelectrics at Microwaves (in Russian) (Sovyetskoye Radio, Moscow, 1979).Google Scholar
  10. 10.
    N.M. Alford, S.J. Penn, A. Templeton, X. Wang, J.C. Gallop, N. Klein, C. Zuccaro, and P. Filhol, IEE Colloquium on Electro-Technical Ceramics–Processing, Properties and Applications, 9/1 (1997).Google Scholar
  11. 11.
    S.J. Penn, N. McNAlford, A. Templeton, N. Klein, J.C. Gallop, P. Filhol, and X. Wang, IEE Colloquium on Advances in Passive Microwave Components, 6/1 (1997).Google Scholar
  12. 12.
    G. Rupprecht and R.O. Bell, Physical Review, 135, A748 (1964).Google Scholar
  13. 13.
    A. Linz, Physical Review, 91, 753 (1953).Google Scholar
  14. 14.
    G.A. Smolenskii and V.A. Isupov, Zhurnal Tekhnicheskoi Fiziki, 24, 1375 (1954).Google Scholar
  15. 15.
    G.S. Khizha, I.B. Vendik, and E.A. Serebryakova, Microwave Phase Shifters Based on p-i-n Diodes (in Russian) (Radio i Svyas, Moscow, 1984).Google Scholar
  16. 16.
    I. Vendik, O. Vendik, and E. Kollberg, IEEE Trans. Microwave Theory and Techniques, 48, 802 (2000).Google Scholar
  17. 17.
    A. Deleniv, A. Eriksson, and S. Gevorgian, 2002 IEEE MTT-S Digest, 197 (2002).Google Scholar
  18. 18.
    J. Rao, D. Patel, and V. Krichevsky, IEEE Trans. Antennas and Propagation, 47, 458 (1999).Google Scholar
  19. 19.
    F.D. Flaviis, N.G. Alexopoulos, and O.M. Stafsudd, IEEE Trans. Microwave Theory Tech., 45, 963 (1997).Google Scholar
  20. 20.
    O.G. Vendik, L.T. Ter-Martirosyan, A.I. Dedyk, S.F. Karmanenko, and R.A. Chakalov, Ferroelectrics, 144, 33 (1993).Google Scholar
  21. 21.
    A. Kozyrev, V. Osadchy, A. Pavlov, and L. Sengupta, IEEE MTT-S Digest, 1355 (2000).Google Scholar
  22. 22.
    B. Acikel, T.R. Taylor, P.F. Hansen, J.S. Speck, and R.A. York, IEEE Microwave and Wireless Components Letters, 12, 237 (2002).Google Scholar
  23. 23.
    A. Kozyrev, A. Ivanov, A. Prudan, O. Soldatenkov, E. Hollmann, V. Loginov, D.S. Ginley, and T. Rivkin, Integrated Ferroelectrics, 24, 287 (1999).Google Scholar
  24. 24.
    V. Sherman, K. Astafiev, N. Setter, A. Tagantsev, O. Vendik, I. Vendik, S. Hoffmann-Eifert, U. Bottger, and R. Waser, IEEE Microwave and Wireless Components Letters, 11, 407 (2001).Google Scholar
  25. 25.
    O.G. Vendik, I.B. Vendik, and V.O. Sherman, Integrated Ferroelectrics, 43, 81 (2002).Google Scholar
  26. 26.
    I. Vendik, O. Vendik, E. Kollberg, and V. Sherman, IEEE Transactions on Microwave Theory and Techniques, 47, 1553 (1999).Google Scholar
  27. 27.
    F.A. Miranda, G. Subramanyam, F.W.V. Keuls, R.R. Romanofsky, J.D. Warner, and C.H. Mueller, IEEE Trans. on Microwave Theory and Techniques, 48, 1181 (2000).Google Scholar
  28. 28.
    A. Kozyrev, A. Ivanov, V. Keis, M. Khazov, V. Osadchy, T. Samoilova, A. Pavlov, G. Koepf, C. Mueller, D. Galt, and T. Rivkin, IEEE MTT-S Digest, 2, 985 (1998).Google Scholar
  29. 29.
    V. Keis, A. Kozyrev, M. Khazov, J. Sok, and J. Lee, Electronics Letters, 34, 1107 (1998).Google Scholar
  30. 30.
    B.H. Moeckly and Y. Zhang, IEEE Transaction on Applied Superconductivity, 11, 450 (2001).Google Scholar
  31. 31.
    I. Vendik, O. Vendik, V. Pleskachev, A. Svishchev, and R. Woerdenweber, IEEE MTT-S Digest, 3, 1461 (2001).Google Scholar
  32. 32.
    T.B. Samoilova, K.F. Astafiev, T. Rivkin, and D.S. Ginley, Journal of Applied Physics, 90, 5703 (2001).Google Scholar
  33. 33.
    J.G. Colom, R.A. Rodrigues-Solis, J. Almodovar, and M. Castaneda, Integrated Ferroelectrics, 42, 313 (2001).Google Scholar
  34. 34.
    C. Weil, P. Wang, H. Downar, J. Wenger, and R. Jakoby, Frequenz, 54, 250 (2000).Google Scholar
  35. 35.
    J.O. Gentner, P. Gerthsen, N.A. Schmidt, and R.E. Send, J. Appl. Phys., 49, 4585 (1978).Google Scholar
  36. 36.
    V.G. Vaks, Introduction to the Microscopic Theory of Ferroelectrics (Nauka, Moscow, 1973).Google Scholar
  37. 37.
    J.H. Barrett, Phys. Rev., 86, 118 (1952).Google Scholar
  38. 38.
    O.G. Vendik, L.T. Ter-Martirosyan, and S.P. Zubko, J. Appl. Phys., 84, 993 (1998).Google Scholar
  39. 39.
    O.G. Vendik, Sov. Phys. Solid State, 14, 849 (1972).Google Scholar
  40. 40.
    O.G. Vendik and S.P. Zubko, J. Appl. Phys., 82, 4475 (1997).Google Scholar
  41. 41.
    O.G. Vendik, S.P. Zubko, and M.A. Nikol'ski, J. Appl. Phys., 92, 7448 (2002).Google Scholar
  42. 42.
    O. Hudak, I. Rychetsky, and J. Petzelt, Ferroelectrics, 208, 429 (1998).Google Scholar
  43. 43.
    J.W. Liou and B.S. Chiou, Journal of Physics-Condensed Matter, 10, 2773 (1998).Google Scholar
  44. 44.
    M. Vollman and R.Waser, J. Am. Ceram. Soc., 77, 235 (1994).Google Scholar
  45. 45.
    K.F. Astafiev, V.O. Sherman, A.K. Tagantsev, and N. Setter, Journal of the European Ceramic Society, 23, 2381 (2003).Google Scholar
  46. 46.
    L.D. Landau, E.M. Lifshitz, and L.P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth-Heinemann, 1995).Google Scholar
  47. 47.
    V. Sherman, A. Tagantsev, K. Astafiev, and N. Setter, (2004) to be published.Google Scholar
  48. 48.
    J.E. Sipe and R.W. Boyd, Physical Review A, 46, 1614 (1992).Google Scholar
  49. 49.
    K.W. Yu, P.M. Hui, and D. Stroud, Physical Review B, 47, 14150 (1993).Google Scholar
  50. 50.
    V.S. Vinogradov, Fiz. Trerd. Tela, 4, 712 (1962).Google Scholar
  51. 51.
    V.L. Gurevich, Fiz. Tverd. Tela, 21, 3453 (1979).Google Scholar
  52. 52.
    A.K. Tagantsev, Sov. Phys. JETP, 53, 555 (1981).Google Scholar
  53. 53.
    K.A. Subbaswamy and D.L. Mills, Phys. Rev. B, 33, 4213 (1986).Google Scholar
  54. 54.
    A.K. Tagantsev, Sov. Phys. JETP, 59, 1290 (1984).Google Scholar
  55. 55.
    A.K. Tagantsev, J. Petzelt, and N. Setter, Solid State Commun, 87, 1117 (1993).Google Scholar
  56. 56.
    V.L. Gurevich, Transport in Phonon Systems (North-Holland, Amsterdam, 1986).Google Scholar
  57. 57.
    R. Zurmulen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, and N. Setter, J. Appl. Phys., 77, 5351 (1995).Google Scholar
  58. 58.
    I.M. Buzin, Vestn. Mosk. Univ. Fiz. Astron., 18, 70 (1977).Google Scholar
  59. 59.
    R. Stolen and K. Dransfeld, Phys. Rev., 139, 1295 (1965).Google Scholar
  60. 60.
    B.Y. Balagurov, V.G. Vaks, and B.I. Shklovskii, Fiz. Tverd. Tela, 12, 89 (1970).Google Scholar
  61. 61.
    O.G. Vendik, Sov. Phys. Solid State, 17, 1096 (1975).Google Scholar
  62. 62.
    G.J. Cooms and R.A. Cowley, J. Phys. C, 6, 121 (1973).Google Scholar
  63. 63.
    A.K. Tagantsev, Sov. Phys. JETP, 50, 948 (1979).Google Scholar
  64. 64.
    C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, Inc., New York, London, 1971).Google Scholar
  65. 65.
    A. Tagantsev, Appl. Phys. Lett., 76, 1182 (2000).Google Scholar
  66. 66.
    A.K. Tagantsev and K.F. Astafiev, Integrated Ferroelectrics, 39, 251 (2001).Google Scholar
  67. 67.
    K.F. Astafiev and A.K. Tagantsev, Proc. of St. Petersburg Electrotech. Univ., Ser. Solid State Phys. And Electronics [Izvestiya LETI], 204 (2002).Google Scholar
  68. 68.
    L.C. Sengupta, S. Stowell, E. Ngo, M.E. O'Day, and R. Lancto, Integrated Ferroelectrics, 8, 821 (1995).Google Scholar
  69. 69.
    E. Schlöman, Phys. Rev., 135, A413 (1964).Google Scholar
  70. 70.
    O.G. Vendik and L.M. Platonova, Sov. Phys. Solid State, 13, 1353 (1971).Google Scholar
  71. 71.
    B.M. Garin, Sov. Phys. Solid State, 32, 1917 (1990).Google Scholar
  72. 72.
    C.J. Brennan, Integrated Ferroelectrics, 7, 93 (1995).Google Scholar
  73. 73.
    J.G. Simmons, J. Phys. Chem. Solids, 32, 2581 (1971).Google Scholar
  74. 74.
    A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996).Google Scholar
  75. 75.
    J.D. Baniecki, R.B. Laibowitz, T.M. Shaw, P.R. Duncombe, D.A. Neumayer, D.E. Kotecki, H. Shen, and Q.Y. Ma, Appl. Phys. Lett., 72, 498 (1998).Google Scholar
  76. 76.
    R. Waser, in Science and Technology of Electroceramic Thin Films, vol. 284, NATO ASI; Series E: Applied Science, edited by O. Auciello and R. Waser (1995), p. 223.Google Scholar
  77. 77.
    Y. Fukuda, K. Numata, K. Aoki, and A. Nishimura, Jpn. J. Appl. Phys., 35, 5178 (1996).Google Scholar
  78. 78.
    J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsk, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorn, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, and R. Waser, Phys. Rev. B, 64, 184111 (2001).Google Scholar
  79. 79.
    L.C. Sengupta, S. Stowell, E. Ngo, and S. Sengupta, Integrated Ferroelectrics, 13, 203 (1996).Google Scholar
  80. 80.
    M. Jain, S.B. Majumder, R.S. Katiyar, D.C. Agrawal, and A.S. Bhalla, Applied Physics Letters, 81, 3212 (2002).Google Scholar
  81. 81.
    R. Kretschmer and K. Binder, Phys. Rev. B, 20, 1065 (1979).Google Scholar
  82. 82.
    O.G. Vendik and S.P. Zubko, J. Appl. Phys., 88, 5343 (2000).Google Scholar
  83. 83.
    I.P. Batra and B.D. Silverman, Solid State Communications, 11, 291 (1972).Google Scholar
  84. 84.
    R.D. Tilley and B. Zeks, Ferroelectrics, 134, 313 (1992).Google Scholar
  85. 85.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972), p. 435.Google Scholar
  86. 86.
    A.K. Tagantsev, E. Courtens, and L. Arzel, Phys. Rev. B, 64, 224107 (2001).Google Scholar
  87. 87.
    Y. Yamada, G. Shirane, and A. Linz, Phys. Rev., 177, 848 (1969).Google Scholar
  88. 88.
    A.K. Tagantsev and I.A. Stolichnov, Appl. Phys. Lett., 74, 1326 (1999).Google Scholar
  89. 89.
    A.K. Tagantsev, C. Pawlaczyk, K. Brooks, and N. Setter, Integrated Ferroelectrics, 4, 1 (1994).Google Scholar
  90. 90.
    A.M. Bratkovsky and A.P. Levanyuk, Phys. Rev. B, 61, 15042 (2000).Google Scholar
  91. 91.
    R. Waser and M. Klee, Integrated Ferroelectrics, 2, 23 (1992).Google Scholar
  92. 92.
    J.S. Speck and W. Pompe, J. Appl. Phys., 76, 466 (1994).Google Scholar
  93. 93.
    S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon, J. Appl. Phys., 86, 4565 (1999).Google Scholar
  94. 94.
    N.A. Pertsev, A.G. Zembilgotov, S. Hoffman, R. Waser, and A.K. Tagantsev, J. Appl. Phys., 85, 1698 (1999).Google Scholar
  95. 95.
    Landolt-Bornstein, Numerical Data and Functional Relationships in Science and Technology (Springer, New York, 1981), Vol. New Series Vol. III/29a,b.Google Scholar
  96. 96.
    N.A. Pertsev, A.G. Zembilgotov, and A.K. Tagantsev, Phys. Rev. Lett., 80, 1988 (1998).Google Scholar
  97. 97.
    A.K. Tagantsev, N.A. Pertsev, P. Muralt, and N. Setter, Phys. Rev. B, 65, 012104 (2002).Google Scholar
  98. 98.
    N.A. Pertsev, A.K. Tagantsev, and N. Setter, Phys. Rev. B, 61, R825 (2000).Google Scholar
  99. 99.
    R.E. Collin, Fondations for Microwave Engineering (McGraw-Hill, New York, 1992), p. 924.Google Scholar
  100. 100.
    D.C. Dube, J. Baborowski, P. Muralt, and N. Setter, Applied Physics Letters, 74, 3546 (1999).Google Scholar
  101. 101.
    A. Tombak, J.P. Maria, F. Ayguavives, Z. Jin, G.T. Stauf, A.I. Kingon, and A. Mortazawi, IEEE Microwave and Wireless Components Letters, 12, 3 (2002).Google Scholar
  102. 102.
    T. Ayguavives, A. Tombak, J.P. Maria, G.T. Stauf, C. Ragaglia, J. Roeder, A. Mortazawi, and A. Kingon, Proc. 12th ISAF, 1, 365 (2000).Google Scholar
  103. 103.
    S. Li, J. Sheen, Q.M. Zhang, S.-J. Jang, A.S. Bhalla, and L.E. Cross, Proc. 8th ISAF, 480 (1992).Google Scholar
  104. 104.
    S.S. Gevorgian, T. Martinsson, P.L.J. Linner, and E.L. Kollberg, IEEE Trans. on Microwave Theory And Techniques, 44, 896 (1996).Google Scholar
  105. 105.
    O. Vendik, S. Zubko, and M. Nikolski, Technical Physics, 44, 349 (1999).Google Scholar
  106. 106.
    A.N. Deleniv, Technical Physics, 44, 356 (1999).Google Scholar
  107. 107.
    M. Sucher and J. Fox, Handbook of Microwave Measurements (Interscience, New York, 1963), vol. 2.Google Scholar
  108. 108.
    C. Krowne, S. Kirchoefer, and J. Pond, IEEE MTT-S Digest, 1193 (2000).Google Scholar
  109. 109.
    E. Carlsson and S. Gevorgian, IEEE Transactions on Microwave Theory and Techniques, 47, 1544 (1999).Google Scholar
  110. 110.
    A.T. Findikoglu, Q.X. Jia, C. Kwon, B.J. Gibbons, K.O. Rasmussen, Y. Fan, D.W. Reagor, and A.R. Bishop, Materials Research Sosiety Symposium Proceedings, 603, 27 (2000).Google Scholar
  111. 111.
    A.T. Findikoglu, D.W. Reagor, K.O. Rasmussen, A.R. Bishop, N. Gronbech-Jensen, Q.X. Jia, Y. Fan, C. Kwon, and L.A. Ostrovsky, Journal of Applied Physics, 86, 1558 (1999).Google Scholar
  112. 112.
    B.W. Hakki and P.D. Coleman, IRE Trans. on Microwave Theory and Technique, 402 (1960).Google Scholar
  113. 113.
    J. Krupka, 5th International Conference on Dielectric Materials, Measurements and Applications, 322 (1988).Google Scholar
  114. 114.
    J. Delaballe, P. Guillon, and Y. Garault, AUE, Electronics and Communication, 35, 80 (1981).Google Scholar
  115. 115.
    O.G. Vendik, E. Kollberg, S.S. Gevorgian, A.B. Kozyrev, and O.I. Soldatenkov, Electronics Letters, 31, 654 (1995).Google Scholar
  116. 116.
    A. Eriksson, P. Linner, and S. Gevorgian, IEE Proc.-Microw. Antennas and Propag., 148, 51 (2001).Google Scholar
  117. 117.
    J. Watkins, Electronics Letters, 5, 524 (1969).Google Scholar
  118. 118.
    D. Kajfez, IEEE Trans. on Microwave Theory And Techniques, 42, 1149 (1994).Google Scholar
  119. 119.
    S. Gevorgian, E. Carlsson, P. Linner, E. Kollberg, O. Vendik, and E. Wikborg, IEEE Trans. on microwave Theory And Techniques, 44, 1738 (1996).Google Scholar
  120. 120.
    R. Thomas and D.C. Dube, Electronics Letters, 33, 218 (1997).Google Scholar
  121. 121.
    D.C. Dube, Ferroelectrics, 225, 141 (1999).Google Scholar
  122. 122.
    Y.G. Wang, M.E. Reeves, W. Chang, H.J.S., and W. Kim, Materials Research Sosiety Symposium Proceedings, 603, 289 (2000).Google Scholar
  123. 123.
    D.E. Steinhauer, C.P. Vlahacos, F.C. Wellstood, S.M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky, and J. Melngailis, Appl. Phys. Lett., 75, 3180 (1999).Google Scholar
  124. 124.
    D. Galt, J. Price, J. Beall, and T. Harvey, IEEE Trans. on Applied Superconductivity, 5, 2575 (1995).Google Scholar
  125. 125.
    A.B. Kozyrev, V.N. Keis, G. Koepf, R. Yandrofski, O.I. Soldatenkov, K.A. Dudin, and D.P. Dovgan, Microelectronic Engineering, 29, 257 (1995).Google Scholar
  126. 126.
    T. Sakudo and H. Unoki, Phys Rev Lett, 26, 851 (1971).Google Scholar
  127. 127.
    M.A. Saifi and L.E. Cross, Phys. Rev. B, 2, 677 (1970).Google Scholar
  128. 128.
    J. Hemberger, P. Lunkenheimer, R. Viana, R. Bohmer, and A. Loidl, Phys. Rev. B, 52, 13159 (1995).Google Scholar
  129. 129.
    G.V. Belokopytov, Ferroelectrics, 168, 69 (1995).Google Scholar
  130. 130.
    J. Krupka, R.G. Geyer, M. Kuhn, and J.H. Hinken, IEEE Transactions on Microwave Theory and Techniques, 42, 1886 (1994).Google Scholar
  131. 131.
    F. Jona and G. Shirane, Feroelectric Crystals (Macmillan, New York, 1962).Google Scholar
  132. 132.
    L. Arzel, PhD thesis, University of Montpellier II, Montpellier, 2001.Google Scholar
  133. 133.
    J. Harada, J. Axe, and G. Shirane, Phys. Rev. B, 4, 155 (1971).Google Scholar
  134. 134.
    E. Ngo, P.C. Joshi, M.W. Cole, and C.W. Hubbard, Appl. Phys. Lett., 79, 248 (2001).Google Scholar
  135. 135.
    L. Wu, S. Wu, F.-C. Chang, Y.-T. Shen, and Y.-C. Chen, J. of Materials Science, 35, 5945 (2000).Google Scholar
  136. 136.
    D.M. Potrepka, S.C. Tidrow, and A. Tauber, Integrated Ferroelectrics, 42, 97 (2002).Google Scholar
  137. 137.
    L.C. Sengupta and S. Sengupta, Mat. Res. Innovat., 278 (1999).Google Scholar
  138. 138.
    B. Su, J.H. Holmes, and T.W. Button, J. Am. Ceram. Soc. (2003) (submitted).Google Scholar
  139. 139.
    C. Ang, A.S. Bhalla, R. Guo, and L.E. Cross, J. Appl. Phys., 90, 2465 (2001).Google Scholar
  140. 140.
    M. Daglish, M. Presland, and S. Batbedat, Integrated Ferroelectrics, 39, 339 (2001).Google Scholar
  141. 141.
    D. Li and M.A. Subramanian, Soild State Science, 2, 507 (2000).Google Scholar
  142. 142.
    S. Triebwasser, Phys. Rev., 114, 63 (1959).Google Scholar
  143. 143.
    B. Cristopher, C.B. DiAntonio, and S.M. Pilgrim, J. Am. Ceram. Soc., 84, 2547 (2001).Google Scholar
  144. 144.
    P. Debely, P. Gunter, and H. Arend, Am. Ceram. Soc. Bull., 58, 606 (1979).Google Scholar
  145. 145.
    J. Venkatesh et al. (unpublished).Google Scholar
  146. 146.
    A. Kozyrev, A. Ivanov, T. Samoilova, O. Soldatenkov, K. Astafiev, and L.C. Sengupta, Journal of Applied Physics, 88, 5334 (2000).Google Scholar
  147. 147.
    A. Outzourhit, J.U. Trefny, T. Kito, B. Yarar, A. Naziripour, and A.M. Hermann, Thin Solid Films, 259, 218 (1995).Google Scholar
  148. 148.
    H.-C. Li, W. Si, A.D. West, and X.X. Xi, Appl. Phys. Lett., 73, 464 (1998).Google Scholar
  149. 149.
    C.B. Parker, J.P. Maria, and A.I. Kingon, Applied Physics Letters, 81, 340 (2002).Google Scholar
  150. 150.
    C. Basceri, S.K. Streiffer, A.I. Kingon, and R. Waser, Journal of Applied Physics, 82, 2497 (1997).Google Scholar
  151. 151.
    J. Bellotti, E.K. Akdogan, A. Safari, W. Chang, and S. Kirchoefer, Integrated Ferroelectrics, 49, 113 (2002).Google Scholar
  152. 152.
    D. Schlom (2003) (unpublished).Google Scholar
  153. 153.
    W. Chang, J.S. Horwitz, A.C. Carter, J.M. Pond, S.W. Kirchoefer, C.M. Gilmore, and D.B. Chrisey, Appl. Phys. Lett., 74, 1033 (1999).Google Scholar
  154. 154.
    C.M. Carlson, T.V. Rivkin, P.A. Parilla, J.D. Perkins, D.S. Ginley, A.B. Kozyrev, V.N. Oshadchy, and A.S. Pavlov, Appl. Phys. Lett., 76, 1920 (2000).Google Scholar
  155. 155.
    K.F. Astafiev, V.O. Sherman, A.K. Tagantsev, N. Setter, P.K. Petrov, T. Kaydanova, D.S. Ginley, S. Hoffmann-Eifert, U. Bottger, and R. Waser, Integrated Ferroelectrics (2003) (submitted).Google Scholar
  156. 156.
    P.K. Petrov, Z.G. Ivanov, and S.S. Gevorgyan, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 288, 231 (2000).Google Scholar
  157. 157.
    Z.G. Ban and S.P. Alpay, Journal of Applied Physics, 91, 9288 (2002).Google Scholar
  158. 158.
    D. Fuchs, C.W. Schneider, R. Schneider, and H. Rietschel, J. Appl. Phys., 85, 7362 (1999).Google Scholar
  159. 159.
    O.G. Vendik and L.T. Ter-Martirosyan, J. Appl. Phys., 87, 1435 (2000).Google Scholar
  160. 160.
    J.H. Chen, C.L. Lia, K. Urban, and C.L. Chen, Applied Physics Letters, 81, 1291 (2002).Google Scholar
  161. 161.
    G. Rupprecht and R.O. Bell, Physical Review, 125, 1915 (1962).Google Scholar
  162. 162.
    M.J. Dalberth, R.E. Stauber, J.C. Price, C.T. Rogers, and D. Galt, Appl. Phys. Lett., 72, 507 (1998).Google Scholar
  163. 163.
    Y. Lemaitre, B. Marcilhac, D. Mansart, J. Siejka, and J.C. Mage, Physica C, 372, 667 (2002).Google Scholar
  164. 164.
    K.F. Astafiev et al. (2003) (unpublished).Google Scholar
  165. 165.
    S. Razumov, A. Tumarkin, O. Buslov, M. Gaidukov, A. Gagarin, A. Ivanov, A. Kozyrev, Y.W. Song, and C.S. Park, Integrated Ferroelectrics, 39, 1317 (2001).Google Scholar
  166. 166.
    P.C. Joshi and M.W. Cole, Appl. Phys. Lett., 77, 289 (2000).Google Scholar
  167. 167.
    M. Bruel, Electronics Letters, 31, 1201 (1995).Google Scholar
  168. 168.
    F.J. Kub, K.D. Hobart, J.M. Pond, and S.W. Kirchoefer, Electronics Letters, 35, 477 (1999).Google Scholar
  169. 169.
    H.N. Al-Shareef, D. Dimos, M.V. Raymond, and R.W. Schwartz, Journal of Electroceramics, 1, 145 (1997).Google Scholar
  170. 170.
    M. Hafid, G.E. Kugel, A. Kania, K. Roleder, and M.D. Fontana, Journal of Physics-Condensed Matter, 4, 2333 (1992).Google Scholar
  171. 171.
    J.H. Koh and A. Grishin, Applied Physics Letters, 79, 2234 (2001).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A.K. Tagantsev
    • 1
  • V.O. Sherman
    • 1
  • K.F. Astafiev
    • 1
  • J. Venkatesh
    • 1
  • N. Setter
    • 1
  1. 1.Ceramics LaboratorySwiss Federal Institute of Technology, EPFLLausanneSwitzerland

Personalised recommendations