Advertisement

Journal of Computational Electronics

, Volume 2, Issue 2–4, pp 487–490 | Cite as

Effect of Shape and Size on Electron Transition Energies for Nanoscale InAs/GaAs Quantum Rings

  • Yiming Li
  • Hsiao-Mei Lu
Article

Abstract

In this paper, we study the impact of the sizes and the shapes of nanoscale semiconductor quantum rings on the electron and hole energy states. A three-dimensional effective one band Schrödinger equation is solved numerically for semiconductor quantum rings with disk, cut-bottom-elliptical, and conical shapes. For small InAs/GaAs quantum rings we have found a sufficient difference in the ground state and excited state (l = −1) electron energies for rings with the same volume but different shapes. Volume dependence of the electron and hole energies can vary over a wide range and depends significantly on the ring shapes. It is found that a non-periodical oscillation of the energy band gap between the lowest electron and hole states as a function of external magnetic fields.

nanoscale quantum ring InAs/GaAs energy spectra geometry and magnetic field effects computer simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Parkin, J. Xin, C. Kaiser et al., Proceedings of the IEEE, 91, 661 (2003).Google Scholar
  2. 2.
    M. Bayer, M. Korkusinski, P. Hawrylak et al. Phys. Rev. Lett., 90, 186801 (2003).Google Scholar
  3. 3.
    F. Pederiva, A. Emperador, and E. Lipparini, Phys. Rev., B66, 165314 (2002).Google Scholar
  4. 4.
    A. Fuhrer, S. Luscher, T. Ihn et al., Nature, 413, 822 (2001).Google Scholar
  5. 5.
    D. Bimberg, M. Grundmann, F. Heinrichsdorff et al., Thin Solid Films, 367, 235 (2000).Google Scholar
  6. 6.
    A.G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys., 59, 755 (1987).Google Scholar
  7. 7.
    R. Blossey and A. Lorke, Phys. Rev., E65, 021603 (2002).Google Scholar
  8. 8.
    J. Planelles, W. Jaskólski, and J.I. Aliaga, Phys. Rev., B65, 033306 (2002).Google Scholar
  9. 9.
    A. Lorke, R.J. Luyken, A.O. Govorov et al., Phys. Rev. Lett., 84, 2223 (2000).Google Scholar
  10. 10.
    A. Bruno-Alfonso and A. Latgé, Phys. Rev., B61, 15887 (2000).Google Scholar
  11. 11.
    Y. Li et al., Comput. Phys. Commun., 141, 66 (2001).Google Scholar
  12. 12.
    Y. Li et al., J. Comput. Elec., 1, 227 (2002).Google Scholar
  13. 13.
    Y. Li and H.-M. Lu, Jpn. J Appl. Phys., 42, 2404 (2003).Google Scholar
  14. 14.
    R.S. Varga, Matrix Iterative Analysis (Springer, Berlin, 2000).Google Scholar
  15. 15.
    D. Watkins, J. Comput. Appl. Math., 123, 67 (2000).Google Scholar
  16. 16.
    D.C. Sorensen, SIAM J. Matrix Anal. Appl., 13, 357 (1992).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Yiming Li
    • 1
    • 2
  • Hsiao-Mei Lu
    • 3
  1. 1.Department of Nano Device TechnologyNational Nano Device LaboratoriesHsinchuTaiwan
  2. 2.Microelectronics and Information Systems Research CenterNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations