Journal of Computational Electronics

, Volume 2, Issue 2–4, pp 177–182 | Cite as

Quantum and Semi-Classical Transport in NEMO 1-D

  • Gerhard Klimeck


The coupling of the fundamentally quantum mechanical nanoelectronic transport simulation through resonant tunneling diodes to semi-classical drift diffusion in the contacts is demonstrated. The coupling between the non-equilibrium Green function formalism used in NEMO to the drift diffusion equation is established by the use of spatially dependent quasi Fermi levels in the reservoirs. The charge distributions are computed quantum mechanically throughout the whole device using the full bandstructure sp3s* tight binding model that includes band non-parabolicity and band warping. The formalism is applied to the simulation of high current density resonant tunneling diodes. Low mobility contacts are shown to introduce a bi-stability in the negative differential resistance region.

transport classical quantum tunneling diffusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Lake et al., “Single and multiband modeling of quantum electron transport through layered semiconductor devices, ” J. Appl. Phys., 81(12), 7845 (1997).Google Scholar
  2. 2.
    D. Blanks, et al., “NEMO: General release of a new comprehensive quantum device simulator, ” Comp. Semic., 156, 639 (1997/98).Google Scholar
  3. 3.
    G. Klimeck, et al., “Quantitative simulation of strained InPbased resonant tunneling diodes, ” IEEE DRC, 92 (1997).Google Scholar
  4. 4.
    R.F. Pierret, “Advanced Semiconductor Fundamentals, ” Modular Series on Solid State Devices, edited by R.F. Pierret and G.W. Neudeck (1989), Vol. VI.Google Scholar
  5. 5.
    E.S. Daniel et al., “Coupled drift-diffusion/quantum transmitting boundary method simulations of thin oxide devices with specific application to a silicon based tunnel switch diode, ” IEEE Trans. on Electr. Dev., 47(5), 1052 (2000).Google Scholar
  6. 6.
    G. Klimeck et al., “Quantum device simulation with a generalized tunneling formula, ” Appl. Phys. Lett., 67(17), 2539 (1995).Google Scholar
  7. 7.
    G. Klimeck et al., “Genetically engineered nanostructure devices, ” Proc. Mat. Res. Soc., 551, 149 (1998).Google Scholar
  8. 8.
    G. Klimeck, “Parallelization of the nanoelectronic modeling tool (NEMO 1-D) on a beowulf cluster, ” J. of Computational Electr., 1(1/2), 75 (2002).Google Scholar
  9. 9.
    J.N. Schulman, H.J.D.L. Santos, and D.H. Chow, “Physicsbased RTD current-voltage equation, ” Electr. Dev. Lett., 17, 220 (1996).Google Scholar
  10. 10.
    T.P.E. Broekaert, et al., “A monolithic 4-bit 2 GPPS resonant tunneling analog-to-digital converter, ” IEEE J. Solid State Circuits, 33(9), 1342 (1998).Google Scholar
  11. 11.
    R. Lake and J. Yang, “A physics based model for the RTD quantum capacitance, ” IEEE Trans. on Electr. Dev., (2003) to appear.Google Scholar
  12. 12.
    R. Bowen,et al., “Quantitative simulation of a resonant tunneling diode, ” J. Appl. Phys., 81(7), 3207 (1997).Google Scholar
  13. 13.
    G. Klimeck, R. Lake, and D.K Blanks, “Role of interface roughness scattering in self-consistent resonant tunneling diode simulation, ” Phys. Rev. B, 58, 7279 (1998).Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Gerhard Klimeck
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations