Journal of Computer-Aided Molecular Design

, Volume 18, Issue 3, pp 209–214 | Cite as

A promising enantioselective Diels–Alder dienophile by computer-assisted rational design: 2,5-diphenyl-1-vinyl-borolane

  • Silvina C. Pellegrinet
  • María A. Silva
  • Jonathan M. Goodman
Article

Abstract

Several chiral vinylboranes have been theoretically evaluated as enantioselective Diels–Alder dienophiles. Theoretical results suggest that optically pure 2,5-diphenyl-1-vinyl-borolane should be the reagent of choice for performing such transformations efficiently.

asymmetric synthesis boranes cycloadditions density functional calculations ligand design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Singleton, D.A., Martinez, J.P. and Ndip, G.M., J. Org. Chem., 57 (1992) 5768.Google Scholar
  2. 2.
    Bonk, J.D. and Avery, M.A., Tetrahedron: Asymmetry, 8 (1997) 1149.Google Scholar
  3. 3.
    (a) Davies, C.D., Marsden, S.P. and Stokes, E.S.E., Tetrahedron Lett.,39 (1998) 8513;(b) Wallace, R.H. and Zong, K.K., J. Organomet. Chem., 581 (1999) 87; (c) Davies, C.D., Marsden, S.P. and Stokes, E.S.E., Tetrahedron Lett., 41 (2000) 4229.Google Scholar
  4. 4.
    There are a few examples of highly selective cycloadditions of vinylboronates, but all these processes make use of either an additional chiral catalyst or reagents having an extra stereocenter or chiral auxiliary not directly attached to the boronate moiety. For instance, see: (a) Narasaka, K. and Yamamoto, I. Tetrahedron, 48 (1992) 5743; (b) Yamamoto I. and Narasaka, K.B., Chem. Soc. Jpn., 67 (1994) 3327; (c) Wallace, R.H., Liu, J., Zong, K.K. and Eddings, A. Tetrahedron Lett., 38 (1997) 6791; (d) Zhang, A. Kan, Y., Zhao, G.-L. and Jiang, B. Tetrahedron, 56 (2000) 965.Google Scholar
  5. 5.
    (a) Singleton, D.A. and Martínez, J.P., J. Am. Chem. Soc., 112 (1990) 7423; (b) Singleton, D.A. and Martínez, J.P., Tetrahedron Lett., 32 (1991) 7365; (c) Singleton, D.A., Martínez, J.P. and Watson, J.V., Tetrahedron Lett., 33 (1992) 1017; (d) Singleton, D.A., Martínez, J.P., Watson, J.V. and Ndip, G.M., Tetrahedron, 48 (1992) 5831; (e) Singleton, D.A. and Leung, S.-W., J. Org. Chem., 57 (1992) 4796; (f) Noiret, N., Youssofi, A., Carboni, B. and Vaultier, M., J. Chem. Soc., Chem. Commun., 16 (1992) 1105; (g) Singleton, D.A., Kim, K. and Martinez, J.P., Tetrahedron Lett., 34 (1993) 3071; (h) Singleton, D.A. and Redman, A.M., Tetrahedron Lett., 35 (1994) 509; (i) Singleton, D.A. and Lee, Y.-K., Tetrahedron Lett., 36 (1995) 3473; (j) Lee, Y.K. and Singleton, D.A., J. Org. Chem., 62 (1997) 2255; (k) Batey, R.A., Lin, D., Wong, A. and Hayhoe, C.L.S., Tetrahedron Lett., 38 (1997) 3699; (l) Zaidlewicz, M., Binkul, J.R. and Sokol, W.J., Organomet. Chem., 580 (1999) 354.Google Scholar
  6. 6.
    (a) Singleton, D.A., J. Am. Chem. Soc., 114 (1992) 6563; (b) Pellegrinet, S.C., Silva, M.A. and Goodman, J.M., J. Am. Chem. Soc., 123 (2001) 8832; (c) Rastelli, A., Gandolfi, R., Sarzi-Amade, M. and Carboni, B., J. Org. Chem., 66 (2001) 2449; (d) Silva, M.A., Pellegrinet, S.C. and Goodman, J.M., ARKIVOC, (2003) 556.Google Scholar
  7. 7.
    (a) Brown, H.C. and Jadhav, P.K., J. Org. Chem., 49 (1984) 4089; (b) Brown, H.C., Racherla, U.S. and Pellecia, P.J., J. Org. Chem., 55 (1990) 1868; (c) Racherla, U.S., Liao, Y. and Brown, H.C., J. Org. Chem., 57 (1992) 6614.Google Scholar
  8. 8.
    (a) Masamune, S., Kim, B., Petersen, J.S., Sato, T., Veenstra, S.J. and Imai, T., J. Am. Chem. Soc., 107 (1985) 4549; (b) Imai, T., Tamura, T., Yamamuro, A., Sato, T., Wollmann, T.A., Kennedy, R.M. and Masamune, S., J. Am. Chem. Soc., 108 (1986) 7402; (c) Garcia, J., Kim, B.M. and Masamune, S., J. Org. Chem., 52 (1987) 4831.Google Scholar
  9. 9.
    (a) Reetz, M.T., Kunisch, F. and Heitmann, P., Tetrahedron Lett., 27 (1986) 4721; (b) Reetz, M.T., Rivadeneira, E. and Niemeyer, C., Tetrahedron Lett., 31 (1990) 3863.Google Scholar
  10. 10.
    Jaguar 4.2, Schrodinger, Inc., Portland, Oregon, 2000.Google Scholar
  11. 11.
    (a) Becke, A.D., J. Chem. Phys., 98 (1993) 5648; (b) Lee, C., Yang, W. and Parr, R., Phys. Rev. B, 37 (1988) 785.Google Scholar
  12. 12.
    12. Hehre, W.J., Radom, L., Schleyer, P.v.R. and Pople, J.A., Ab Initio Molecular Orbital Theory; Wiley, New York, 1986.Google Scholar
  13. 13.
    Guner, V., Khuong, K.S., Leach, A.G., Lee, P.S., Bartberger, M.D. and Houk, K.N., J. Phys. Chem. A., 107 (2003) 11445 and references cited therein.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Silvina C. Pellegrinet
    • 1
  • María A. Silva
    • 2
  • Jonathan M. Goodman
    • 3
  1. 1.Instituto de Química Orgánica y de Síntesis (CONICET), Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de RosarioRosarioArgentina
  2. 2.Unilever Centre for Molecular Science Informatics, Department of ChemistryUniversity of CambridgeCambridgeUK
  3. 3.Unilever Centre for Molecular Science Informatics, Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations