Journal of Computer-Aided Molecular Design

, Volume 18, Issue 3, pp 189–208 | Cite as

Validation of an empirical RNA-ligand scoring function for fast flexible docking using RiboDock®

  • S. David Morley
  • Mohammad Afshar


We report the design and validation of a fast empirical function for scoring RNA-ligand interactions, and describe its implementation within RiboDock®, a virtual screening system for automated flexible docking. Building on well-known protein-ligand scoring function foundations, features were added to describe the interactions of common RNA-binding functional groups that were not handled adequately by conventional terms, to disfavour non-complementary polar contacts, and to control non-specific charged interactions. The results of validation experiments against known structures of RNA-ligand complexes compare favourably with previously reported methods. Binding modes were well predicted in most cases and good discrimination was achieved between native and non-native ligands for each binding site, and between native and non-native binding sites for each ligand. Further evidence of the ability of the method to identify true RNA binders is provided by compound selection (`enrichment factor') experiments based around a series of HIV-1 TAR RNA-binding ligands. Significant enrichment in true binders was achieved amongst high scoring docking hits, even when selection was from a library of structurally related, positively charged molecules. Coupled with a semi-automated cavity detection algorithm for identification of putative ligand binding sites, also described here, the method is suitable for the screening of very large databases of molecules against RNA and RNA-protein interfaces, such as those presented by the bacterial ribosome.

Abbreviations: ACD – Available Chemicals Directory; AMP – adenosine monophosphate; EF – enrichment factor; FMN – flavin mononucleotide; FRET – fluorescence resonance energy transfer; RMSD – root mean square deviation; TAR – trans-activation response element; Tat – transcriptional activator protein.

bacterial A-site cavity detection enrichment factor guanidine high throughput docking HIV-1 TAR RiboDock® RNA aptamer structure-based drug design virtual screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shoichet, B.K., McGovern, S.L., Wei, B. and Irwin, J.J., Curr. Opin. Chem. Biol., 6 (2002) 439.PubMedGoogle Scholar
  2. 2.
    Schneider, G. and Böhm, H.-J., Drug Discov. Today, 7 (2002) 64–70.PubMedGoogle Scholar
  3. 3.
    Afshar, M., Prescott, C.D. and Varani, G., Curr. Opin. Biotechnol., 10 (1999) 59.PubMedGoogle Scholar
  4. 4.
    Drysdale, M., Lentzen, G., Matassova, N., Murchie, A., Aboul-Ela, F. and Afshar, M., Prog. Med. Chem., 39 (2002) 73.PubMedGoogle Scholar
  5. 5.
    Carter, A.P., Clemons, W.M., Brodersen, D.E., Morgan-Warren, R.J., Wimberly B.T. and Ramakrishnan, V., Nature, 407 (2000) 340.PubMedGoogle Scholar
  6. 6.
    Brodersen, D.E., Clemons, W.M. Jr., Carter, A.P., Morgan-Warren, R.J., Wimberly B.T. and Ramakrishnan V., Cell, 103 (2000) 1143.PubMedGoogle Scholar
  7. 7.
    Srinivasan, J., Leclerc, F., Xu, W., Ellington, A.D. and Cedergren R., Folding Design, 1 (1996) 463.PubMedGoogle Scholar
  8. 8.
    Leclerc, F. and Cedergren R., J. Med. Chem., 41 (1998) 175.PubMedGoogle Scholar
  9. 9.
    Leclerc, F. and Karplus, M., Theo. Chem. Acc., 101 (1999) 131.Google Scholar
  10. 10.
    Hermann, T. and Westhof, E., J. Med. Chem., 42 (1999) 1250.Google Scholar
  11. 11.
    Filikov, A.V., Mohan, V., Vickers, T.A., Griffey, R.H., Cook, P.D., Abagyan, R.A. and James, T.L, J. Comput.-Aided Mol. Design, 14 (2000) 593.Google Scholar
  12. 12.
    Lind, K.E., Du, Z., Fujinaga, K., Peterlin, B.M. and James, T.L., Chem. Biol., 9 (2002) 185.PubMedGoogle Scholar
  13. 13.
    Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1175.Google Scholar
  14. 14.
    Abagyan, R.A., Totrov, M.M. and Kuznetsov, D.N., J. Comput. Chem., 15 (1994) 488.Google Scholar
  15. 15.
    MDL Information Systems, San Leandro, CA.Google Scholar
  16. 16.
    Du, Z., Lind, K.E. and James, T.L., Chem. Biol., 9 (2002) 707.PubMedGoogle Scholar
  17. 17.
    Böhm, H.J., J. Comput.-Aided Mol. Design, 8 (1994) 243.Google Scholar
  18. 18.
    Böhm, H.J., J. Comput.-Aided Mol. Design, 12 (1998) 309.Google Scholar
  19. 19.
    Rarey, M., Wefing, S. and Lengauer, T., J. Comput.-Aided Mol. Design, 10 (1996) 41.Google Scholar
  20. 20.
    Schulz-Gasch, T. and Stahl, M., J. Mol. Model. [Online], 9 (2003) 47.Google Scholar
  21. 21.
    Eldridge, M.D., Murray, C.W., Auton, T.R., Paolini, G.V. and Mee, R.P., J. Comput.-Aided Mol. Design, 11 (1997) 425.Google Scholar
  22. 22.
    UK Registered Trade Mark E1308667.Google Scholar
  23. 23.
    Jain, A.N., J. Comput.-Aided Mol. Design, 10 (1996) 427.Google Scholar
  24. 24.
    Yang, Y., Kochoyan, M., Burgstaller, P., Westhof, E. and Famulok, M., Science, 272 (1996) 1343.PubMedGoogle Scholar
  25. 25.
    Hendlich, M., Acta Crystallogr., D54 (1998) 1178.Google Scholar
  26. 26. Scholar
  27. 27.
    We thank reviewer #2 for highlighting the sinA2 correction factor.Google Scholar
  28. 28.
    Wang, Y., Hamasaki, K. and Rando, R.R., Biochemistry, 36 (1997) 768.PubMedGoogle Scholar
  29. 29.
    Murchie, A.I.H., Davis, B., Isel, C., Afshar, M., Drysdale, M.J., Bower, J., Potter, A.J., Starkey, I.D., Swarbrick, T.M., Mirza, S., Prescott, C.D., Vaglio, P., Aboul-ela, F. and Karn, J., J. Mol. Biol., 336 (2004) 625.PubMedGoogle Scholar
  30. 30.
    Karn, J. and Prescott, C.D., U.S. Pat. No. 6,573,045 (2003).Google Scholar
  31. 31.
    Davis, B., Afshar, M., Varani, G., Murchie, A.I.H., Karn, J., Lentzen, G., Drysdale, M., Bower, J., Potter, A.J., Starkey, I.D., Swarbrick, T.M. and Aboul-ela, F., J. Mol. Biol., 336 (2004) 343.PubMedGoogle Scholar
  32. 32.
    Aboul-ela, F., Karn, J. and Varani, G., J. Mol. Biol., 253 (1995) 313.PubMedGoogle Scholar
  33. 33.
    Baurin, N., Baker, R., Richardson, C., Chen, I., Foloppe, N., Potter, A., Jordan, A., Roughley, S., Parratt, M., Greaney, P., Morley, D. and Hubbard, R.E., J. Chem. Inf. Comput. Sci., 44 (2004) 643.PubMedGoogle Scholar
  34. 34.
    Chemical Computing Group, Scholar
  35. 35.
    Knowles, D.J.C., Foloppe, N., Matassova, N.B. and Murchie, A.I.H., Curr. Opin. Pharmacol., 2 (2002) 501.PubMedGoogle Scholar
  36. 36.
    Foloppe, N., Chen, I., Davis, B., Hold A., Morley, D. and Howes, R., Bioorg. Med. Chem., 12 (2004) 935.PubMedGoogle Scholar
  37. 37.
    Patel, D.J., Suri, A.K., Jiang, F., Jiang, L., Fan, P., Kumar, R.A. and Nonin, S., J. Mol. Biol., 272 (1997) 645.PubMedGoogle Scholar
  38. 38.
    Nissink, J.W.M., Murray, C., Hartshorn, M., Verdonk, M.L., Cole, J.C. and Taylor, R., Proteins, 49 (2002) 457.PubMedGoogle Scholar
  39. 39.
    Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999) 228.PubMedGoogle Scholar
  40. 40.
    Barril, X., Hubbard, R.E. and Morley, S.D., Mini Reviews in Medicinal Chemistry, accepted.Google Scholar
  41. 41.
    Afshar, M., Caves, L.S., Guimard, L., Hubbard, R.E., Calas, B., Grassy, G. and Haiech, J., J. Mol. Biol., 244 (1994) 554.PubMedGoogle Scholar
  42. 42.
    Hermann, T. and Patel, D.J., Science, 287 (2000) 820.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. David Morley
    • 1
  • Mohammad Afshar
    • 1
  1. 1.RiboTargetsCambridgeshireUK

Personalised recommendations