Journal of Computer-Aided Molecular Design

, Volume 18, Issue 3, pp 155–166 | Cite as

Model based on GRID-derived descriptors for estimating CYP3A4 enzyme stability of potential drug candidates

  • Patrizia Crivori
  • Ismael Zamora
  • Bill Speed
  • Christian Orrenius
  • Italo Poggesi

Abstract

A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds.

Abbreviations: ADME – absorption, distribution, metabolism and excretion; CYP – cytochrome P450; MIFs – molecular interaction fields; HTS – high throughput screening; DDI – drug-drug interactions; 3D – three-dimensional; PCA – principal components analysis; CPCA – consensus principal components analysis; PLS – partial least squares; PLSD – partial least squares discriminant; GRIND – grid independent descriptors; GRID – software originally created and developed by Professor Peter Goodford.

CYP3A4 in silico screening CYP3A4 stability GRIND descriptors Partial Least Squares Discriminant PLSD Quantitative Structure Property Relationships (QSPR) VolSurf descriptors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clark, D.E. and Pickett, S.D., Drug Discov. Today, 5 (2000) 49.Google Scholar
  2. 2.
    van de Waterbeemd, H., Smith, D.A., Beaumont, K. and Walker, D.K., J. Med. Chem., 44 (2001) 1313.PubMedGoogle Scholar
  3. 3.
    van de Waterbeemd, H., Curr. Opin. Drug Discov. Dev., 5 (2002) 33.Google Scholar
  4. 4.
    van de Waterbeemd, H. and Gifford, E., Nat. Rev. Drug Discov., 2 (2003)192.PubMedGoogle Scholar
  5. 5.
    Boobis, A., Gundert-Remy, U., Kremers, P., Macheras, P. and Pelkonen, O., Eur. J. Pharm. Sci., 17 (2002) 183.PubMedGoogle Scholar
  6. 6.
    Guengerich, F.P., Chem. Res. Toxicol., 14 (2001) 611.PubMedGoogle Scholar
  7. 7.
    Testa, B., In Wolff, M. (Ed) Drug Metabolism, in Burger's Medicinal Chemistry and Drug Discovery. Principles and Practice, Vol. 1. John Wiley & Son, New York, 1994, pp. 129–180.Google Scholar
  8. 8.
    Bertrand, M., Jackson, P. and Walther, P., Eur. J. Pharm. Sci. 11 (2 Suppl) (2000) S61.Google Scholar
  9. 9.
    Lewis, D.F.V., Xenobiotica, 28 (1998) 617.PubMedGoogle Scholar
  10. 10.
    Wrighton, S.A., Schuetz, E.G., Thummel, K.E., Shen, D.D., Korzekwa, K.R. and Watkins, P.B., Drug Metab. Rev., 32 (2000) 339.PubMedGoogle Scholar
  11. 11.
    Thummel, K.E. and Shen, D.D., In Hardman, J.G., Limbird, L.E., Molinoff, P.B. and Gilman, A.G. (Eds), Appendix II. Design and Optimization of Dosage Regimens: Pharmacokinetic Data. In Goodman and Gilman's. The Pharmacological Basis of Therapeutics, 10th Edition, McGraw-Hill, New York, 2001, pp. 1917–2023.Google Scholar
  12. 12.
    Cruciani, G., Crivori, P., Carrupt, P-A. and Testa, B., Theochem,503 (2000) 17.Google Scholar
  13. 13.
    Pastor, M., Cruciani, G., McLay, I., Pickett, S. and Clementi, S., J. Med. Chem., 43(2000)3233.PubMedGoogle Scholar
  14. 14.
    Singh, S.B., Shen, L.Q., Walker, M.J. and Sheridan, R.P., J. Med. Chem., 46 (2003) 1330.PubMedGoogle Scholar
  15. 15.
    Zamora, I., Afzelius, L. and Cruciani, G., J. Med. Chem., 46 (2003) 2313.PubMedGoogle Scholar
  16. 16.
    CORINA. Molecular Networks, GmbH, Computerchemie, Erlangen, Germany, 1998.Google Scholar
  17. 17.
    VolSurf v.3.0, Molecular Discovery Ltd., Oxford, UK, 2002.Google Scholar
  18. 18.
    Almond v.3.0, Multivariate Infometric Analysis S.r.l., Perugia, Italy, 2002.Google Scholar
  19. 19.
    Wold, S., Esbensen, K. and Geladi, P., Chemom. Intell. Lab. Syst., 2 (1987) 37.Google Scholar
  20. 20.
    Kastenholz, M.A., Pastor, M., Cruciani, G., Haaksma, E.E.J. and Fox, T., J. Med. Chem., 43 (2000) 3033.PubMedGoogle Scholar
  21. 21.
    Dunn, W.J. and Wold, S., Pattern Recognition Techniques in drug design. In Hansch, C., Sammes, P.G. and Taylor, J.B. (Eds), Comprehensive Medicinal Chemistry, Vol. 4, Pergamon Press, Oxford, UK, 1990, pp. 691–714.Google Scholar
  22. 22.
    GOLPE 4.5, Multivariate Infometric Analysis S.r.l., Perugia, Italy, 2002.Google Scholar
  23. 23.
    GRID v. 20, Molecular Discovery Ltd., Oxford, UK, 2002.Google Scholar
  24. 24.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.PubMedGoogle Scholar
  25. 25.
    Wold, S., Technometrics, 20 (1979) 379.Google Scholar
  26. 26.
    Wold, S., Albano, C., Dunn, W. J. III, Edlund, U., Esbensen, K., Geladi, P., Helberg, S., Johansson, E., Lindberg, W. and Sjostrom, M., Multivariate data analysis in chemistry. In Kowalsky, B.R. (Ed), Chemometrics Mathematics and Statistics in Chemistry. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1983, pp. 17–96.Google Scholar
  27. 27.
    Cruciani, G., Pastor, M. and Guba, W., Eur. J. Pharm. Sci., 11(Suppl. 2) (2000) S29.Google Scholar
  28. 28.
    Crivori, P., Cruciani, G., Carrupt, P.-A. and Testa, B., J. Med. Chem., 43 (2000) 2204.PubMedGoogle Scholar
  29. 29.
    Alifrangis, L.H., Christensen, I.T., Berglund, A., Sandberg, M., Hovgaard, L. and Frokjaer, S., J. Med. Chem., 43 (2000) 103.PubMedGoogle Scholar
  30. 30.
    Ajay, W., Walters, P. and Murck, M.A., J. Med. Chem., 41 (1998) 3314.PubMedGoogle Scholar
  31. 31.
    Sadowski, J. and Kubinyi, H., J. Med. Chem., 41 (1998) 3325.PubMedGoogle Scholar
  32. 32.
    Guengerich, F.P., Annu. Rev. Pharmaco. Toxicol., 39 (1999)1.Google Scholar
  33. 33.
    Lewis, D.F.V., Eddershaw, P.J., Goldfarb, P.S. and Tarbit, M.H., Xenobiotica, 26 (1996) 1067.PubMedGoogle Scholar
  34. 34.
    Smith, D.A., Jones, B.C. and Walker, D., Med. Res. Rev., 16(3) (1996) 243.PubMedGoogle Scholar
  35. 35.
    Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Discov. Today, 2(10) (1997) 406.Google Scholar
  36. 36.
    Smith, D.A., Ackland, M.J. and Jones, B.C., Drug Discov. Today, 2(11) (1997) 479.Google Scholar
  37. 37.
    Shen, M., Xiao, Y., Golbraikh, A., Gombar, V.K. and Tropsha, A., J. Med. Chem.,46 (2003) 3013.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Patrizia Crivori
    • 1
  • Ismael Zamora
    • 3
  • Bill Speed
    • 1
  • Christian Orrenius
    • 2
  • Italo Poggesi
    • 1
  1. 1.Pharmacokinetics, Dynamics and Metabolism, Pharmacia, Gruppo Pfizer Inc.Nerviano (Mi)Italy
  2. 2.Chemistry Department, Pharmacia, Gruppo Pfizer Inc.Nerviano (Mi)Italy
  3. 3.Grupo de Recerca Informatica Biomedica IMIMPompeu Fabra UniversityBarcelonaSpain

Personalised recommendations