Journal of Computer-Aided Molecular Design

, Volume 18, Issue 1, pp 1–11 | Cite as

Theoretical study of selective methylation in the synthesis of azithromycin



Azithromycin is a 15-membered macrolide antibiotic which is active in vitro against clinically important gram-negative bacteria. In this study, the selectivity of the methylation mechanism was analyzed computationally on the 2′-OCbz-3′-NMeCbz derivative of azithromycin in vacuum and in DMF. We have shown that the methylation of the hydroxy group on C-6 is energetically unfavorable compared to the other hydroxy groups in vacuum; the softness values further showed that the C-6 anion is not reactive towards CH3I in the methylation mechanism. To understand the effect of the solvent on the methylation process, detailed molecular dynamics simulations were performed in DMF using the anions at the C-4′′, C-6, C-11 and C-12 positions. We find the conformations of the anions not to be affected by the presence of the solvent. The radial distribution functions of the solvent molecules around the O of the anions demonstrate that DMF molecules cluster around the C-6 anion. The relative strength of the anion–solvent interactions reveal that the solvent molecules provide the largest stabilization to the C-6 anion and prevent the methylation at this position. The latter descriptor was found to be an important factor in explaining the experimentally observed selectivity towards the methylation of the C-4′′, C-6, C-11 and C-12 anions.

azalide antibiotics conformational analysis methylation molecular dynamics solvent effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dokic, S., Kobrehel, G., Lazarevski, G., Lopotar, N., Tamburesev, Z., Kamenar, B., Nagl, A. and Vickovic, I., J. Chem. Soc. Perkin Trans. I, (1986) 1881.Google Scholar
  2. 2.
    Kirst, H.A. and Sides, G.D., Antimicrob. Agents Chemother., 33 (1989) 1419.Google Scholar
  3. 3.
    Kremer, C.J., Antibiot. Rev., 9 (2002) 174.Google Scholar
  4. 4.
    Dokic, S., Kobrehel G., Lopotar, N., Kamenar, B., Nagl, A. and Mrvos, D., J. Chem. Res. (S) (1988) 152.Google Scholar
  5. 5.
    Waddell, S.T., Santoreli, G.M., Blizzard, T.A., Graham, A. and Occi, J., Bioorg. Med. Chem. Lett., 8 (1998) 549.PubMedGoogle Scholar
  6. 6.
    Duran, D., Aviyente, V. and Baysal, C., J. Chem. Soc., Perkin Trans. 2 (2002) 670.Google Scholar
  7. 7.
    Duran, D., Aviyente, V. and Baysal, C., J. Comput-Aided Mol. Des., revised.Google Scholar
  8. 8.
    Baysal, C. and Meirovitch, H., J. Comput. Chem., 20 (1999) 1659.Google Scholar
  9. 9.
    Molecular Simulations Inc., San Diego, CA.Google Scholar
  10. 10.
    Dauber-Osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins, 4 (1988) 31.PubMedGoogle Scholar
  11. 11.
    Andersen, H.C., J. Chem. Phys., 72 (1980) 2384.Google Scholar
  12. 12.
    Swope, W.C., Andersen, H.C., Berens, P.H. and Wilson, K.R., J. Phys. Chem., 76 (1982) 637.Google Scholar
  13. 13.
    Saunders, M., Houk, K.N., Wu, Y.D., Still, W.C., Lipton, M., Chang, G. and Guida, W.C., J. Am. Chem. Soc., 112 (1990) 1419.Google Scholar
  14. 14.
    GAUSSIAN 98 Revision A.1, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A. Jr., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Karkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, G., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T.A., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, V., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle E.S. and Pople, J.A., Gaussian Inc., Pittsburgh, PA, 1998.Google Scholar
  15. 15.
    Duran, D., Aviyente, V. and Baysal, C., J. Mol. Model., in press. DOI 10.1007/s00894-003-0176-3.Google Scholar
  16. 16.
    SPARTAN Version 5.1.3. Wavefunction, Inc., Irvine, CA.Google Scholar
  17. 17.
    Partiban, S., Oliveira, G. and Martin, J.M.L., J. Phys. Chem. A, 105 (2001) 895.Google Scholar
  18. 18.
    Pearson, R.G., J. Am. Chem. Soc., 85 (1963) 3533.Google Scholar
  19. 19.
    Pearson, R.G. (Ed.),Hard and Soft Acids and Bases. Dowden, Hutchinson, and Ross, Inc., Stroudsburg, PA, 1973.Google Scholar
  20. 20.
    Safi, B., Choho, K. and Geerlings, P., J. Phys. Chem. A, 105 (2001) 591.Google Scholar
  21. 21.
    Colombo, G., Toba, S. and Merz, Jr., K.M., J. Am. Chem. Soc., 121 (1999) 3486.Google Scholar
  22. 22.
    Digilio, G., Bracco, C., Barbero, L., Chicco, D., Del Curto, M.D., Esposito, P., Traversa, S. and Aime, S., J. Am. Chem. Soc., 124 (2002) 3431.PubMedGoogle Scholar
  23. 23.
    Chen, J., McAllister, M.A., Lee, J.K. and Houk, K.N., J. Org. Chem., 63 (1998) 4611.Google Scholar
  24. 24.
    Allen, M.P. and Tildesley, D.J. (Eds.), Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1987, p. 204.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Art and SciencesBogaziçi UniversityBebek, IstanbulTurkey
  2. 2.Laboratory of Computational Biology, Faculty of Engineering and Natural SciencesSabanci University, OrhanliTuzla, IstanbulTurkey

Personalised recommendations