Advertisement

Journal of Computer-Aided Molecular Design

, Volume 17, Issue 11, pp 755–763 | Cite as

Comparative study of several algorithms for flexible ligand docking

  • Badry D. Bursulaya
  • Maxim Totrov
  • Ruben Abagyan
  • Charles L. BrooksIII
Article

Abstract

We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein–ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The docking accuracy of the methods was judged based on the corresponding rank-one solutions. We have found that the fraction of molecules docked with acceptable accuracy is 0.47, 0.31, 0.35, 0.52 and 0.93 for, respectively, AutoDock, DOCK, FlexX, GOLD and ICM. Thus ICM provided the highest accuracy in ligand docking against these receptors. The results from the other programs are found to be less accurate and of approximately the same quality. A speed comparison demonstrated that FlexX was the fastest and AutoDock was the slowest among the tested docking programs. The database screening was performed using DOCK, FlexX and ICM. ICM was able to identify the original ligands within the top 1% of the total library in 17 cases. The corresponding number for DOCK and FlexX was 7 and 8, respectively. We have estimated that in virtual database screening, 50% of the potentially active compounds will be found among ≈1.5% of the top scoring solutions found with ICM and among ≈9% of the top scoring solutions produced by DOCK and FlexX.

AutoDock DOCK FlexX Gold ICM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.PubMedGoogle Scholar
  2. 2.
    Roche, O., Kiyama, R. and Brooks, C.L., 3rd, J. Med. Chem., 44 (2001) 3592.Google Scholar
  3. 3.
    Kearsley, S.K., Underwood, D.J., Sheridan, R.P., and Miller, M.D., J. Comput.-Aided. Mol. Des., 8 (1994) 565.PubMedGoogle Scholar
  4. 4.
    Leach, A.R., J. Mol. Biol., 235 (1994) 345.PubMedGoogle Scholar
  5. 5.
    Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996)Google Scholar
  6. 6.
    Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1176.Google Scholar
  7. 7.
    Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.PubMedGoogle Scholar
  8. 8.
    Goodford, P.J., J. Med. Chem., 28 (1985) 849.PubMedGoogle Scholar
  9. 9.
    Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided. Mol. Des., 8 (1994) 153.PubMedGoogle Scholar
  10. 10.
    Momany, F.A., McGuire, R.F., Burgess, A.W. and Scheraga, H.A., J. Phys. Chem., 79 (1975) 2361–2381.Google Scholar
  11. 11.
    Goodsell, D.S. and Olson, A.J., Proteins, 8 (1990) 195.PubMedGoogle Scholar
  12. 12.
    Mazur, A.K. and Abagyan, R.A., J. Biomol. Struct. Dyn., 6 (1989) 815.PubMedGoogle Scholar
  13. 13.
    Abagyan, R. and Argos, P., J. Mol. Biol., 225 (1992) 519.PubMedGoogle Scholar
  14. 14.
    Abagyan, R., Totrov, M. and Kuznetsov, D., J. Comput. Chem., 15 (1994) 488–506.Google Scholar
  15. 15.
    Vieth, M., Hirst, J.D., Dominy, B.N., Daigler, H. and Brooks, C.L., III, J. Comput. Chem., 19 (1998) 1623–1631.Google Scholar
  16. 16.
    Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639–1662.Google Scholar
  17. 17.
    Liu, M. and Wang, S., J. Comput.-Aided. Mol. Des., 13 (1999) 435.PubMedGoogle Scholar
  18. 18.
    Totrov, M. and Abagyan, R., Proteins, Suppl 1 (1997) 215.PubMedGoogle Scholar
  19. 19.
    Totrov, M. and Abagyan, R., eds. Protein–ligand Docking as an Energy Optimization Problem. The Thermodynamics of Receptor–Inhibitor Interactions, ed. R.B. Raffa. 2000, Wiley and Sons: New York.Google Scholar
  20. 20.
    McMartin, C. and Bohacek, R.S., J. Comput.-Aided. Mol. Des., 11 (1997) 333.PubMedGoogle Scholar
  21. 21.
    Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.PubMedGoogle Scholar
  22. 22.
    Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.PubMedGoogle Scholar
  23. 23.
    Wu, G., Robertson, D.H., Brooks, C.L., III, and Vieth, M., J. Comput. Chem., 24 (2003) 1549.PubMedGoogle Scholar
  24. 24.
    Vieth, M., Hirst, J.D., Kolinski, A. and Brooks, C.L., III, J. Comput. Chem., 19 (1998) 1612–1622.Google Scholar
  25. 25.
    Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput.-Aided. Mol. Des., 14 (2000) 435.PubMedGoogle Scholar
  26. 26.
    Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem., 42 (1999) 5100.PubMedGoogle Scholar
  27. 27.
    Diller, D.J. and Verlinde, L.M.J., J. Comput. Chem., 20 (1999) 1740–1751.Google Scholar
  28. 28.
    Knegtel, R.M., Bayada, D.M., Engh, R.A., von der Saal, W., van Geerestein, V.J. and Grootenhuis, P.D., J. Comput.-Aided. Mol. Des., 13 (1999) 167.PubMedGoogle Scholar
  29. 29.
    Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.PubMedGoogle Scholar
  30. 30.
    Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999)228.PubMedGoogle Scholar
  31. 31.
    Halgren, T.A., J. Comput. Chem., 17 (1995) 490–641.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Badry D. Bursulaya
    • 1
  • Maxim Totrov
    • 1
  • Ruben Abagyan
    • 1
  • Charles L. BrooksIII
    • 1
  1. 1.Department of Molecular Biology (TPC6)The Scripps Research InstituteLa JollaUSA

Personalised recommendations