Journal of Applied Phycology

, Volume 16, Issue 5, pp 333–340 | Cite as

Anti-oxidation of agar oligosaccharides produced by agarase from a marine bacterium

  • Jingxue Wang
  • Xiaolu Jiang
  • Haijin Mou
  • Huashi Guan

Abstract

In order to prepare the active agar oligosaccharide, agarase extracted from a strain of unidentified marine bacterium from the South China Sea coast was selected for the agar depolymerization. The optimum decomposing conditions were determined to be pH 7.0, 35 °C and halophilic properties 2%. Three main degraded products, AOS-1, AOS-2 and AOS-3, were separated by ethanol fractionation and anion exchange chromatography. The molecular mass was analyzed by MALDI-TOF-MS. The agar oligosaccharides exhibited antioxidative activities in scavenging hydroxyl free radical, scavenging superoxide anion radical and inhibiting lipid peroxidation. The fragment with the sulfate group showed stronger antioxidative activities than that without the sulfate group. Higher antioxidative activities were found when the molecular mass was increased. The results indicated that the antioxidative activities were closely related to the molecular mass of the agar oligosaccharides and the substitute groups binding the carbohydrate ring.

agar oligosaccharide agarase antioxidation MALDI-TOF-MS marine bacterium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbo JAC, Moss MO (1979) The isolation and characterization of agarolytic bacteria from a low land river. J. Gen. Microbiol. 113: 355-368.Google Scholar
  2. Aoki T, Araki T, Kitamikado M (1990) Purification and characterization of a novel beta-agarase from Vibrio sp. AP-2. Eur. J. Biochem. 187: 461-465.Google Scholar
  3. Deng CH, Yang XL, Wang Y, Xu HB (2000) Effect of degree of substitution on the antioxidative activities of the sulfated hunai polysaccahrides. J. Huazhong Univ. Sci. Tech. 28: 104-107 (in Chinese).Google Scholar
  4. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1965) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.Google Scholar
  5. Fang JN (1993) Advance on study of sulfated polysaccharides. Chin. Pharm. J. 28: 393-395 (in Chinese).Google Scholar
  6. Fern·ndez LE, Valiente OG, Mainardi V, Bello JL, Velez H, Rosado A (1989) Isolation and characterization of an antitumor active agar-type polysaccharide of Gracilaria dominguensis. Carbo-hydr. Res. 190: 77-83.Google Scholar
  7. Groleau D, Yaphe W (1977) Enzymatic hydrolysis of agar: Purification and characterization of beta-neoagarotetraose hydrolase from Pseudomonas atlantica. Can. J. Microbiol. 23: 672-697.Google Scholar
  8. Ha JC, Kim GT, Kim SK, Oh TK, Yu JH, Kong IS (1997) Beta-Agarase from Pseudomonas sp. W7: Purification of the recom-binant enzyme from Escherichia coli and the effects of salt on its activity. Biotechnol. Appl. Biochem. 26: 1-6.Google Scholar
  9. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. (1994) Bergey's Manual of Determinative Microbiology, 9th ed., Williams and Wilkins, Baltimore, pp. 192-193.Google Scholar
  10. Leon O, Quintana L, Peruzzo G, Slebe JC (1992) Purification and properties of an extracelluar agarase from Alteromonas sp. Strain C-1. Appl. Environ. Microbiol. 58: 4060-4063.Google Scholar
  11. Mazumder S, Ghosal PK, Pujol CA, Carlucci MJ, Damonte EB, Ray B (2002) Isolation, chemical investigation and antiviral activity of polysaccharides from Gracilaria corticata (Gracilariaceae, Rhodophyta). Int. J. Biol. Macromol. 31: 87-95.Google Scholar
  12. Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the alpha-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214: 599-607.Google Scholar
  13. Romanenko LA, Zhukova NV, Rohde M, Lysenko AM, Mikhailov V, Stackebrandt E (2002) Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53: 125-131.Google Scholar
  14. Ruperez P, Ahrazem O, Leal JA (2002) Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J.Agric. Food Chem. 50: 840-845.Google Scholar
  15. Sampietro AR, Vattuone de Sampletro MA (1971) Characterization of the agarolytic system of agarobacterium pastinator. Biochim. Biophys. Acta. 244: 65-76.Google Scholar
  16. Shieh WY, Jean WD (1998) Alterococcus agarolyticus, gen. nov., sp. nov., a halophilic thermophilic bacterium capable of agar degradation. Can. J. Microbiol. 44: 637-645.Google Scholar
  17. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060.Google Scholar
  18. Stanier RY (1942) Agar-decomposing strains of the Actinomyces coelicolor species group. J. Bacteriol. 44: 555-570.Google Scholar
  19. Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiol. 65: 245-248.Google Scholar
  20. Sugano Y, Terada I, Arita M, Noma M, Matsumoto T (1993) Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549-1554.Google Scholar
  21. Takemoto KK (1966) Plaque mutants of animal viruses. Prog. Med. Virol. 8: 314-348.Google Scholar
  22. Usov AI, Miroshnikova LI (1975) Isolation of agarase from Lit-torina mandshurica by affinity chromatography on Biogel A. Carbohydr. Res. 43: 204-212.Google Scholar
  23. Van der Meulen HJ, Harder W, Vedkamp H (1974) Isolation and characterization of Cytophaga flevensis sp. nov., a new agarolytic flexibacterium. Antonie Van Leeuwenhoek 40: 329-346.Google Scholar
  24. van Hofsten B, Malmqvist M (1975) Degradation of agar by a Gram-negative bacterium. J. Gen. Microbiol. 87: 150-158.Google Scholar
  25. Vera J, Alvarez R, Murano E, Slebe JC, Leon O (1998) Identification of a marine agarolytic pseudoalteromonas and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383.Google Scholar
  26. Volpi N, Tarugi P (1999) Influence of chondroitin sulfate charge density, sulfate group position, and molecular mass on Cu 2 +-mediated oxidation of human low-density lipoproteins: Effect of normal human plasma-derived chondroitin sulfate. J. Biochem. 125: 297-304.Google Scholar
  27. von Borel E, Hostettler F, Deuel H (1952) Fasciculus I-15. Quantita-tive zuckerbestimmung mit 3,5-dinitrosalicylsaure and phenol. Helv. Chim. Acta. 35: 115-120.Google Scholar
  28. Weinberger F, Richard C, Kloareg B, Kashman Y, Hoppe H, Friedlander M (2001) Structure-activity relationships of oligoa-gar elicitors towards Gracilaria conferta. J.Phycol. 37: 418-426.Google Scholar
  29. Xue C, Fang Y, Lin H, Chen L, Li Z, Deng D, Lu C (2001) Chemical characters and antioxidative properties of sulfated polysaccharides from Laminaria japonica. J.Appl. Phycol. 13: 67-70.Google Scholar
  30. Zhang EX, Yu LJ, Zhou YL, Xiao X (1996) Studies on the peroxidaton of polyunsaturated fatty acid from lipoprotein induced by iron and the evaluation of the antioxidative activity of some natural products. Acta. Biochem. Biophys. Sin. 28: 218-222 (in Chinese).Google Scholar
  31. Zhang LP, Zhang YS, Shun F, Liang ZY (1994) The influence of sulfation on the conformation and biological activity of polysaccharides from Plearotus citrinopileatua. Acta Biochim. Biophys. Sin. 26: 417-431 (in Chinese).Google Scholar
  32. Zhang Q, Yu P, Li Z, Zhang H, Xu Z, Li P (2003) Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J.Appl. Phycol. 15: 305-310.Google Scholar
  33. Zhou LZ, Yang XL, Zhou JY, Xu HB (2002) Advances of the antioxidative activities research of polysaccharides. Chin. J. Biochem. Pharm. 23: 210-212 (in Chinese).Google Scholar
  34. Zimniak L, Awasthi S, Srivastava SK, Zimniak P (1977) Increased resistance to oxidative stress in transfected cultured cells overexpressing glutathione S-transferase mGSTA4-4. Toxicol. appl. Pharmacol. 143: 221-229.Google Scholar
  35. Zou GL, Gui XF, Zhong XL, Zhu RP (1986) A method for SOD activity analysis. Prog. Biochem. Biophys. 13: 71-73 (in Chinese).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jingxue Wang
    • 1
  • Xiaolu Jiang
    • 1
  • Haijin Mou
    • 1
  • Huashi Guan
    • 1
  1. 1.Department of Food Science and TechnologyOcean University of ChinaShandong ProvincePeople's Republic of China.

Personalised recommendations