Advertisement

Journal of Applied Phycology

, Volume 16, Issue 4, pp 309–314 | Cite as

Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites

  • V. Ördög
  • W. A. Stirk
  • R. Lenobel
  • M. Bancířová
  • M. Strnad
  • J. van Staden
  • J. Szigeti
  • L. Németh
Article

Abstract

Nearly two hundred microalgal strains (174 Chlorophyta and 23 Cyanobacteria) were screened against some bacteria, filamentous fungi and yeasts using a disc-diffusion type bioassay. From this initial screening, 10 Chlorophyta strains from three genera (Desmococcus, Chlorella and Scenedesmus) were selected because of their high antimicrobial activity. These 10 strains were partially purified and tested using MIC antimicrobial and microtiter IC50 anticancer assays. These preselected algal strains showed a high incidence of antibacterial activity against both Gram-positive (9 out of 10 species) and Gram-negative (7 out of 10 species) bacteria. The extracts were also effective against some tumour cell lines.

anticancer antimicrobial Chlorophyta Cyanobacteria microalgae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boussiba S (1988) Anabaena azollae as a nitrogen biofertilizer. In Stadler T, Mollion J, Verdus M-C, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology, Elsevier Applied Sciences, England, pp. 169–178.Google Scholar
  2. De Lara-Isassi G, Álvarez-Hernández S, Collado-Vides L (2000) Ichtyotoxic activity of extracts from Mexico marine macroalgae. J. Appl. Phycol. 12: 45–52.Google Scholar
  3. De Nys R, Dworjanyn SA, Steinberg PD (1998) A new method for determining surface concentrations of marine natural products on seaweeds. Marine Ecol. Prog. Ser. 162: 79–87.Google Scholar
  4. Hornby D(1983) Suppressive soils. Ann. Rev. Phytopath. 21: 65–85.Google Scholar
  5. Huleihel M, Ishanu V, Tal J, Arad S (2001) Antiviral effect of red microalgal polysaccharides on Herpes simplex and Varicella zoster viruses. J. Appl. Phycol. 13: 127–134.Google Scholar
  6. Justo GZ, Silva MR, Queiroz MLS (2001) Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal ehrlich ascites tumour transplantation in mice. Immunopharm. Immunotoxicol. 23: 119–131.Google Scholar
  7. Lewis JA, Papavizas GC (1991) Biocontrol of plant diseases: The approach of tomorrow. Crop Protect. 10: 95–105.Google Scholar
  8. Metting B, Zimmerman WJ, Crouch IJ, van Staden J (1990) Agronomic use of seaweeds and microalgae. In Akatsuka I (ed), Intoduction to Applied Phycology, SPB Academic Publishing, The Hague, The Netherlands, pp. 589–627.Google Scholar
  9. Ördög V (1982) Apparatus for laboratory algal bioassay. Int. Rev. Ges. Hydrobiol. 67: 127–136.Google Scholar
  10. Ördög V, Stirk WA, van Staden J, Novák O, Strnad M (2004) Endogenous cytokinins in microalgae (Chlorophyta). J. Phycol. 40: 88–95.Google Scholar
  11. Pedurand P, Reynaud PA (1987) Do cyanobacteria enhance germination and growth of rice? Plant Soil 101: 235–240.Google Scholar
  12. Rang HP, Dale MM (1987). Pharmacology. Churchill Livingstone, Edinburgh, UK.Google Scholar
  13. Robles Centeno P, Ballentine DL (1999) Effects of culture conditions on production of antibiotically active metabolites by the marine alga Spyridia filamentosa (Ceramiaceae, Rhodophyta), I. Light. J. Appl. Phycol. 11: 217–224.Google Scholar
  14. Shaeffer DJ, Krylov V(2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxic. Environ. Safety 45: 208–227.Google Scholar
  15. Scheffer RP (1997) The Nature of Disease in Plants. Cambridge University Press, Cambridge, UK.Google Scholar
  16. Whitton BA (2000) Soils and rice-fields. In Whitton BA, Potts M (eds), The Ecology of Cyanobacteria, Kluwer Academic, Dordrecht, pp. 233–255.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • V. Ördög
    • 1
  • W. A. Stirk
    • 2
  • R. Lenobel
    • 3
  • M. Bancířová
    • 3
  • M. Strnad
    • 3
  • J. van Staden
    • 2
  • J. Szigeti
    • 4
  • L. Németh
    • 1
  1. 1.Department of Plant Physiology and Plant Biotechnology, Faculty of Agricultural and Food SciencesUniversity of West HungaryMosonmagyaróvárHungary
  2. 2.Research Centre for Plant Growth and DevelopmentUniversity of KwaZulu-Natal PietermaritzburgScottsvilleSouth Africa.
  3. 3.Laboratory of Growth Regulators, PalackýUniversity & Institute of Experimental Botany AS CR, SlechtitelOlomoucCzech Republic
  4. 4.Institute of Food Sciences, Faculty of Agricultural and Food Science, University of West HungaryMosonmagyaróvárHungary

Personalised recommendations