Journal of Applied Phycology

, Volume 16, Issue 4, pp 291–296 | Cite as

Local and chemical distribution of phlorotannins in brown algae

  • Toshiyuki Shibata
  • Shigeo Kawaguchi
  • Yoichiro Hama
  • Masanori Inagaki
  • Kuniko Yamaguchi
  • Takashi Nakamura
Article

Abstract

The local and chemical distribution of phlorotannins among the Japanese Laminariaceae, Eisenia bicyclis, Ecklonia cava and Ecklonia kurome, was investigated. As a result of light microscopy observations with vanillin-HCl staining, phlorotannins were found to be accumulated within the vegetative cells of the outer cortical layer of the thalli, regardless of the species, stage of growth or organ. Crude phlorotannins comprised about 3.0% of the algal powder for each of the algae. High-performance liquid chromatography (HPLC) showed that the phlorotannins of E. bicyclis were composed of phloroglucinol (0.9%), phloroglucinol tetramer (4.4%), eckol (7.5%), phlorofucofuroeckol A (21.9%), dieckol (23.4%), and 8,8'-bieckol (24.6%), plus some other unknown phenolic compounds (17.3%). The composition of the phlorotannins differed little among the Laminariaceae, except for a significantly larger amount of the tetramer, MW 478, in E. bicyclis.

brown alga Ecklonia cava Ecklonia kurome Eisenia bicyclis HPLC light microscopy phlorotannin TLC vanillin-HCl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold TM, Tagett NM, Tanner CE, Hatch WI, Ferrari KE (2001) Evidence for methyl jasmonate-induced phlorotannin production in Fucus vesiculosus (Phaeophyceae). J. Phycol. 37: 1026–1029.Google Scholar
  2. Dixon RA (2001) Natural products and plant disease resistance. Na-ture 411: 843–847.Google Scholar
  3. Fukuyama Y, Miura I, Kinjyo Z, Mori H, Kido M, Nakayama Y, Takahashi M, Ochi M (1985) Eckols, novel phlorotannins with a dibenzo-p-dioxin skeltone possessing inhibitory effects on á 2-macroglobulin from the brown alga Ecklonia kurome OKA-MURA. Chem. Lett. 6: 739–742.Google Scholar
  4. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Kido M, Mori H, Nakayama Y, Takahashi M (1989) Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURAand inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem. Pharm. Bull. 37: 349–353.PubMedGoogle Scholar
  5. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M (1990a) Anti-plasmin inhibitor. V. Struc-tures of novel dimeric eckols isolated from the brown alga Ecklonia kurome OKAMURA. Chem. Pharm. Bull. 37: 2438–2440.Google Scholar
  6. Fukuyama Y, Kodama M, Miura I, Kinzyo Z, Mori H, Nakayama Y, Takahashi M (1990b) Anti-plasmin inhibitor. VI. Structure of phlorofucoeckol A, a novel phlorotan-nin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome OKAMURA. Chem. Pharm. Bull. 38: 133–135.PubMedGoogle Scholar
  7. Glombitza K-W, Keusgen M, Hauperich S (1997) Fucophlorethols from the brown algae Sargassum spinuligerum and Cystophora torulosa. Phytochemistry 46: 1417–1422.Google Scholar
  8. Glombitza K-W, Schmidt A (1999) Trihydroxyphlorethols from the brown alga Carpophyllum angustifolium. Phytochemistry 51: 1095–1100.Google Scholar
  9. Ingham JL (1973) Disease resistance of higher plants. Concept of preinfectional and postinfectional resistance. Phytopath. Z. 78: 314–335.Google Scholar
  10. Nakamura T, Mukaiyama T, Nagayama K (1991) A rapid and simple method to detect antioxidative substances on a thin-layer chro-matography plate. J. Fac. Agric. Kyushu Univ. 36: 93–98.Google Scholar
  11. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fisheries Sci. 62: 923–926.Google Scholar
  12. Nakayama Y, Takahashi M, Fukuyama Y, Kinzyo Z (1989) An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA. Agric. Biol. Chem. 63: 3025–3030.Google Scholar
  13. Neill SO, Gould KS, Kilmartin PA, Mitchell KA, Markham KR (2002) Antioxidant activities of red versus green leaves in Elatostema rugosum. Plant Cell Environ. 25: 539–547.Google Scholar
  14. Pellegrini L (1980) Cytological studies on physodes in the vegetative cells of Cystoseira stricta Sauvageau (Phaeophyta, Fucales). J. Cell. Sci. 41: 209–231.PubMedGoogle Scholar
  15. Ragan MA (1976) Physode and the phenolic compounds of brown algae. Composition and significance of physode in vivo. Bot. Mar. 19: 145–154.Google Scholar
  16. Ragan MA, Glombitza K-W (1986) Phlorotannins, brown algal polyphenols. Progr. Phycol. Res. 4: 129–241.Google Scholar
  17. Sailler B, Glombitza K-W. (1999) Phlorethol and fucophlorethol from the brown alga Cystophora retroflexa. Phytochem. 50: 869–881.Google Scholar
  18. Shibata T, Yamaguchi K, Nagayama K, Kawaguchi S, Nakamura T (2002a). Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur. J. Phycol. 37: 493–500.Google Scholar
  19. Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T (2002b) Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Tech. 37: 703–709.Google Scholar
  20. Shibata T, Nagayama K, Tanaka R, Yamaguchi K, Nakamura T (2003) Inhibitory effects of brown algal phlorotannins on se-cretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol. 15: 61–66.Google Scholar
  21. Shoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41: 125–139.Google Scholar
  22. Stahl E (1969) Thin-Layer Chromatography. A Laboratory Hand-book.Springer-Verlag, Berlin, Heidelberg, NY, p. 1041.Google Scholar
  23. Taniguchi K, Kurata K, Suzuki M (1992a) Chemical defense mech-anism of the brown alga Eisenia bicyclis against marine herbi-vores. Nippon Suisan Gakkaishi 58: 571–575.Google Scholar
  24. Taniguchi K, Kurata K, Suzuki M(1992b) Feeding-deterrent activity of some laminariaceous brown algae against the Ezo-abalone (BCP91-IV-D-5). Nippon Suisan Gakkaishi 58: 577–581.Google Scholar
  25. Targett NM, Arnold TM (1998) Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 34: 195–205.Google Scholar
  26. Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeo-graphic comparisons of marine algal polyphenols: Evidence against a latitudinal trend. Oecologia 89: 464–470.Google Scholar
  27. Toth GB, Pavia H (2000) Water-borne cues induce chemical defense in a marine alga (Ascophyllum nodosum). Prot. Natl Acad. Sci. USA 97: 14418–14420.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Toshiyuki Shibata
    • 1
  • Shigeo Kawaguchi
    • 2
  • Yoichiro Hama
    • 3
  • Masanori Inagaki
    • 4
  • Kuniko Yamaguchi
    • 2
  • Takashi Nakamura
    • 2
  1. 1.Venture Business LaboratorySaga UniversitySagaJapan.
  2. 2.Laboratory of Marine Biology, Graduate School of AgricultureKyushu UniversityFukuokaJapan
  3. 3.Department of Applied Biological Science, Faculty of AgricultureSaga UniversitySagaJapan
  4. 4.Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan

Personalised recommendations