Detonation Wave Propagation in Rotational Gas Flows

  • V. A. Levin
  • G. A. Skopina
Article

Abstract

This paper studies the propagation of detonation and shock waves in vortex gas flows, in which the initial pressure, density, and velocity are generally functions of the coordinate — the distance from the symmetry axis. Rotational axisymmetric flow having a transverse velocity component in addition to a nonuniform longitudinal velocity is considered. The possibility of propagation of Chapman–Jouguet detonation waves in rotating flows is analyzed. A necessary conditions for the existence of a Chapman–Jouguet wave is obtained.

vortex shock wave detonation wave axisymmetric flow discontinuity surface Chapman–Jouguet wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    V. A. Levina and G. G. Chernyi, “Asymptotic laws of behavior of detonation waves,” Prikl. Mat. Mekh., 31, No. 3, 393-405 (1967).Google Scholar
  2. 2.
    V. A. Levin, “Propagation of detonation waves in electric and magnetic fields,” Report No. 972, Institute of Mechanics, Moscow State University (1969).Google Scholar
  3. 3.
    A. A. Afans'ev and V. A. Levin, “Possibility of detonation wave propagation in the Chapman-Jouguet mode in inhomogeneous media,” Combust. Expl. Shock Waves, 29, No. 2, 223-232 (1993).Google Scholar
  4. 4.
    V. A. Levin and A. M. Svalov, “Propagation of detonation waves,” Tr. Inst. Mekh. Mosk. Univ., 44, 194-203 (1978).Google Scholar
  5. 5.
    V. A. Kulikovskii, “Cauchy problem for a quasilinear system in the presence of characteristic points on the initial surface,” Prikl. Mat. Mekh., 49, No. 2, 258-264.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • V. A. Levin
    • 1
  • G. A. Skopina
    • 1
  1. 1.Institute of Automatics and Control Processes, Far East Division, Russian Academy of SciencesVladivostok

Personalised recommendations