Journal of Autism and Developmental Disorders

, Volume 34, Issue 2, pp 139–150 | Cite as

Performance on Cambridge Neuropsychological Test Automated Battery Subtests Sensitive to Frontal Lobe Function in People with Autistic Disorder: Evidence from the Collaborative Programs of Excellence in Autism Network

  • Sally Ozonoff
  • Ian Cook
  • Hilary Coon
  • Geraldine Dawson
  • Robert M. Joseph
  • Ami Klin
  • William M. McMahon
  • Nancy Minshew
  • Jeffrey A. Munson
  • Bruce F. Pennington
  • Sally J. Rogers
  • M. Anne Spence
  • Helen Tager-Flusberg
  • Fred R. Volkmar
  • Debora Wrathall

Abstract

Recent structural and functional imaging work, as well as neuropathology and neuropsychology studies, provide strong empirical support for the involvement of frontal cortex in autism. The Cambridge Neuropsychological Test Automated Battery (CANTAB) is a computer-administered set of neuropsychological tests developed to examine specific components of cognition. Previous studies document the role of frontal cortex in performance of two CANTAB subtests: the Stockings of Cambridge, a planning task, and the Intradimensional/Extradimensional Shift task, a measure of cognitive set shifting. To examine the integrity of frontal functions, these subtests were administered to 79 participants with autism and 70 typical controls recruited from seven universities who are part of the Collaborative Programs of Excellence in Autism network. The two groups were matched on age, sex, and full-scale IQ. Significant group differences were found in performance on both subtests, with the autism group showing deficits in planning efficiency and extradimensional shifting relative to controls. Deficits were found in both lower- and higher-IQ individuals with autism across the age range of 6 to 47 years. Impairment on the CANTAB executive function subtests did not predict autism severity or specific autism symptoms (as measured by the ADI-R and ADOS), but it was correlated with adaptive behavior. If these CANTAB subtests do indeed measure prefrontal function, as suggested by previous research with animals and lesion patients, this adds to the accumulating evidence of frontal involvement in autism and indicates that this brain region should remain an active area of investigation.

Autism executive function planning set shifting frontal lobes CANTAB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders. (4th ed.). Washington, DC: Author.Google Scholar
  2. Anderson, C. V., Bigler, E. D., & Blatter, D. D. (1995). Frontal lobe lesions, diffuse damage, and neuropsychological functioning in traumatic brain-injured patients. Journal of Clinical and Experimental Neuropsychology, 17, 900-908.Google Scholar
  3. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S. J., & Robbins, T. W. (1996). Neural systems engaged by planning: A PET study of the Tower of London task. Neuropsychologia, 34, 515-526.Google Scholar
  4. Baron-Cohen, S., Ring, H., Wheelwright, S., Bullmore, E., Brammer, M., Simmons, A., & Williams, S. (1999). Social intelligence in the normal and autistic brain: An fMRI study. European Journal of Neuroscience, 11, 1891-1898.Google Scholar
  5. Bennetto, L., Pennington, B. F., & Rogers, S. J. (1996). Intact and impaired memory functions in autism. Child Development, 67, 1816-1835.Google Scholar
  6. Casanova, M. F., Buxhoeveden, D. P., Switala, A. E., & Roy, E. (2002). Minicolumnar pathology in autism. Neurology, 58, 428-432.Google Scholar
  7. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  8. Damasio, A. R., & Maurer, R. G. (1978). A neurological model for childhood autism. Archives of Neurology, 35, 777-786.Google Scholar
  9. Dawson, G., Carver, L., Meltzoff, A. N., Panagiotides, H., McPartland, J., & Webb, S. J. (2002). Neural correlates of face and object recognition in young children with autism spectrum disorder, developmental delay, and typical development. Child Development, 73, 700-717.Google Scholar
  10. Dennis, M. (1991). Frontal lobe function in childhood and adolescence: A heuristic for assessing attention regulation, executive control, and the intentional states important for social discourse. Special Issue: Developmental consequences of early frontal lobe damage. Developmental Neuropsychology, 7, 327-358.Google Scholar
  11. Dias, R., Robbins, T. W., & Roberts, A. C. (1996). Dissociation in prefrontal cortex of attentional and affective shifts. Nature, 380, 69-72.Google Scholar
  12. Duncan, J. (1986). Disorganization of behaviour after frontal lobe damage. Cognitive Neuropsychology, 3, 271-290.Google Scholar
  13. Fray, P. J., Robbins, T. W., & Sahakian, B. J. (1996). Neuropsychiatric applications of CANTAB. International Journal of Geriatric Psychiatry, 11, 329-336.Google Scholar
  14. Grattan, L. M., Bloomer, R., Archambault, F. X., & Eslinger, P. J. (1990). Cognitive and neural underpinnings of empathy. The Clinical Neuropsychologist, 4, 279.Google Scholar
  15. Griffith, E. M., Pennington, B. F., Wehner, E. A., & Rogers, S. J. (1999). Executive functions in young children with autism. Child Development, 70, 817-832.Google Scholar
  16. Horwitz, B., Rumsey, J. M., Grady, C. L., & Rapoport, S. I. (1988). The cerebral metabolic landscape in autism: Intercorrelations of regional glucose utilization. Archives of Neurology, 45, 749-755.Google Scholar
  17. Hughes, C., Russell, J., & Robbins, T. W. (1994). Evidence for executive dysfunction in autism. Neuropsychologia, 32, 477-492.Google Scholar
  18. Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Leventhal, B. L., DiLavore, P. C., Pickles, A., & Rutter, M. (2000). The Autism Diagnostic Observation Schedule-Generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205-223.Google Scholar
  19. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659-685.Google Scholar
  20. Luciana, M., & Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four-to eight-year-old children. Neuropsychologia, 36, 273-293.Google Scholar
  21. Luna, B., Minshew, N. J., Garver, K. E., Lazar, N. A., Thulborn, K. R., Eddy, W. F., & Sweeney, J. A. (2002). Neocortical system abnormalities in autism: An fMRI study of spatial working memory. Neurology, 59, 834-840.Google Scholar
  22. McEvoy, R. E., Rogers, S. J., & Pennington, B. F. (1993). Executive function and social communication deficits in young autistic children. Journal of Child Psychology and Psychiatry, 34, 563-578.Google Scholar
  23. Minshew, M. J., Luna, B., & Sweeney, J. A. (1999). Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology, 52, 917-922.Google Scholar
  24. Mountain, M. A., & Snow, W. G. (1993). Wisconsin card sorting test as a measure of frontal pathology: A review. The Clinical Neuropsychologist, 7, 108-118.Google Scholar
  25. Owen, A. M., Doyon, J., Petrides, M., & Evans, A. C. (1996). Planning and spatial working memory: A positron emission tomography study in humans. European Journal of Neuroscience, 8, 353-364.Google Scholar
  26. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J., & Robbins, T. W. (1991). Extra-dimensional versus intradimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 29, 993-1006.Google Scholar
  27. Ozonoff, S. (1995). Reliability and validity of the Wisconsin Card Sorting Test in studies of autism. Neuropsychology, 9, 491-500.Google Scholar
  28. Ozonoff, S., & Jensen, J. (1999). Specific executive function profiles in three neurodevelopmental disorders. Journal of Autism and Developmental Disorders, 29, 171-177.Google Scholar
  29. Ozonoff, S., & McEvoy, R. E. (1994). A longitudinal study of executive function and theory of mind development in autism. Development and Psychopathology, 6, 415-431.Google Scholar
  30. Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1991). Executive function deficits in high-functioning autistic individuals: Relationship to theory of mind. Journal of Child Psychology and Psychiatry and Allied Disciplines, 32, 1081-1105.Google Scholar
  31. Ozonoff, S., South, M., & Miller, J. N. (2000). DSM-IV-defined Asperger syndrome: Cognitive, behavioral, and early history differentiation from high-functioning autism. Autism, 4, 29-46.Google Scholar
  32. Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathologies. Journal of Child Psychology and Psychiatry, 37, 51-87.Google Scholar
  33. Price, B. H., Daffner, K. R., Stowe, R. M., & Mesulam, M. M. (1990). The comportmental learning disabilities of early frontal lobe damage. Brain, 113, 1383-1393.Google Scholar
  34. Prior, M., & Hoffmann, W. (1990). Brief report: Neuropsychological testing of autistic children through an exploration with frontal lobe tests. Journal of Autism and Developmental Disorders, 20, 581-590.Google Scholar
  35. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., Lawrence, A. D., McInnes, L., & Rabbitt, P. M. A. (1998). A study of performance on tests from the CANTAB battery sensitive to frontal lobe dysfunction in a large sample of normal volunteers: Implications for theories of executive functioning and cognitive aging. Journal of the International Neuropsychological Society, 4, 474-490.Google Scholar
  36. Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): Afactor analytic study of a large sample of normal elderly volunteers. Dementia, 5, 266-281.Google Scholar
  37. Roberts, A., Robbins, T. W., & Everitt, B. J. (1988). Extra-and intradimensional shifts in man and marmoset. Quarterly Journal of Experimental Psychology, 40B, 321-342.Google Scholar
  38. Rumsey, J. M. (1985). Conceptual problem-solving in highly verbal, nonretarded autistic men. Journal of Autism and Developmental Disorders, 15, 23-36.Google Scholar
  39. Rumsey, J. M., & Hamburger, S. D. (1988). Neuropsychological findings in high-functioning men with infantile autism, residual state. Journal of Clinical and Experimental Neuropsychology, 10, 201-221.Google Scholar
  40. Rumsey, J. M., & Hamburger, S. D. (1990). Neuropsychological divergence of high-level autism and severe dyslexia. Journal of Autism and Developmental Disorders, 20, 155-168.Google Scholar
  41. Russell, J. (1997). Autism as an executive disorder. New York: Oxford University Press.Google Scholar
  42. Stuss, D. T. (1992). Biological and psychological development of executive functions. Special Issue: The role of frontal lobe maturation in cognitive and social development. Brain and Cognition, 20, 8-23.Google Scholar
  43. Szatmari, P., Tuff, L., Finlayson, A. J., & Bartolucci, G. (1990). Asperger's Syndrome and autism: Neurocognitive aspects. Journal of the American Academy of Child and Adolescent Psychiatry, 29, 130-136.Google Scholar
  44. Turner, M. (1997). Towards an executive dysfunction account of repetitive behavior in autism. In J. Russell (Ed.), Autism as an executive disorder (pp. 57-100). New York: Oxford University Press.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Sally Ozonoff
    • 1
    • 9
  • Ian Cook
    • 9
  • Hilary Coon
    • 1
  • Geraldine Dawson
    • 2
  • Robert M. Joseph
    • 3
  • Ami Klin
    • 4
  • William M. McMahon
    • 1
  • Nancy Minshew
    • 5
  • Jeffrey A. Munson
    • 2
  • Bruce F. Pennington
    • 6
  • Sally J. Rogers
    • 7
    • 9
  • M. Anne Spence
    • 8
  • Helen Tager-Flusberg
    • 3
  • Fred R. Volkmar
    • 4
  • Debora Wrathall
    • 1
  1. 1.Department of PsychiatryUniversity of Utah School of MedicineSalt Lake City
  2. 2.Center on Human Development and DisabilityUniversity of WashingtonSeattle
  3. 3.Department of Anatomy and NeurobiologyBoston University School of MedicineBoston
  4. 4.Child Study CenterYale University School of MedicineNew Haven
  5. 5.Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburgh
  6. 6.Department of PsychologyUniversity of DenverDenver
  7. 7.Department of PsychiatryUniversity of Colorado Health Sciences CenterDenver
  8. 8.Department of PediatricsUniversity of California–IrvineIrvine
  9. 9.M.I.N.D. Institute, University of California–Davis School of MedicineSacramento

Personalised recommendations