Journal of Applied Electrochemistry

, Volume 34, Issue 8, pp 781–796 | Cite as

Electrocatalytic Reduction of Nitrate on Activated Rhodium Electrode Surfaces

  • Philip M. Tucker
  • Michael J. Waite
  • Brian E. Hayden


Electrodeposited rhodium films on titanium substrates have been electrochemically activated to produce a high area surface with a specific activity for nitrate electroreduction directly to N2. The activation process involves oxidation/reduction cycles in an alkaline, KCl electrolyte containing nitrate ions. Surfaces of up to 230 times the geometric area are achieved, together with a surface morphological modification. While the active surface, once formed, is intrinsically unstable during long-term nitrate reduction, its activity can be maintained in situ by an electrochemical cycling procedure. The high area rhodium has the form of a nano-structured ‘sponge’, with a surface area of ca. 19 m2 g−1. The morphological modification is evidenced by a change in the hydrogen UPD structure, changes in the surface redox behaviour associated with OH adsorption, and a reduction in the activation energy for nitrate reduction from ca. 47 to 20 kJ mol−1. The reduction in activation energy, however, is accompanied by a decrease in the pre-exponential factor, and this apparent compensation effect results in similar rate constants on the activated and unactivated surfaces. The enhancement in the catalyst's activity for nitrate reduction results from an increase in the relative activity of nitrate reduction over water reduction. The activated catalyst sustains steady state nitrate reduction at an increased over-potential before the reaction to N2 decays, and hydrogen evolution and reduction to ammonia take place. The presence of nitrate ions is essential for the formation of the active surface, and specifically adsorbed nitrate ions and reductive intermediates are present at the surface when it is reformed. A mechanism for the elementary surface reaction steps involved in nitrate reduction, and the apparent ‘habit’ growth of the active surface phase in the nitrate containing solution is discussed.

electrocatalysis groundwater nitrate reduction rhodium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.W. Canter, 'Nitrates in Groundwater' (CRC Press, Boca Raton, FL, USA, 1996).Google Scholar
  2. 2.
    WHO, 'Guidelines for Drinking Water Quality', Vol. 2 (and Addendum) (World Health Organisation, 1996, 1998).Google Scholar
  3. 3.
    A. Kapoor and T. Viraraghavan, J. Environ. Eng. 123 (1997) 371.Google Scholar
  4. 4.
    V. Mateju, S. Cizinska, J. Krejei and T. Janoch, Enzyme Microbiol.Technol. 14 (1992) 170.Google Scholar
  5. 5.
    S. Horold, T. Tacke and K.D. Vorlop, Environ. Technol. 14 (1993)931.Google Scholar
  6. 6.
    S. Horold, K.D. Vorlop, T. Tacke and M. Sell, Catal. Today 17 (1993) 21.Google Scholar
  7. 7.
    Y. Yoshinaga, T. Akita, I. Mikami and T. Okuhara, J. Catal. 207 (2002) 37.Google Scholar
  8. 8.
    G. Strukul, R. Gavagnin, F. Pinna, E. Modaferri, S. Perathoner, G. Centi, M. Marella and M. Tomaselli, Catal. Today 55 (2000)139.Google Scholar
  9. 9.
    U. Prusse, M. Hahnlein, J. Daum and K.D. Vorlop, Catal. Today 55 (2000) 79.Google Scholar
  10. 10.
    A. Pintar, Catal. Today 77 (2003) 451.Google Scholar
  11. 11.
    A. Pintar, J. Batista and J. Levec, Chem. Eng. Sci. 56 (2001) 1551.Google Scholar
  12. 12.
    A. Pintar, J. Batista and J. Levec, Catal. Today 66 (2001) 503.Google Scholar
  13. 13.
    L. Lemaignen, C. Tong, V. Begon, R. Burch and D. Chadwick, Catal. Today 75 (2002) 43.Google Scholar
  14. 14.
    O.M. Ilinitch, F.P. Cuperus, L.V. Nosova and E.N. Gribov, Catal.Today 56 (2000) 137.Google Scholar
  15. 15.
    F. Epron, F. Gauthard and J. Barbier, J. Catal. 206 (2002) 363.Google Scholar
  16. 16.
    F. Epron, F. Gauthard and J. Barbier, Appl. Catal. A-Gen. 237 (2002) 253.Google Scholar
  17. 17.
    F. Deganello, L.F. Liotta, A. Macaluso, A.M. Venezia and G.Deganello, Appl. Catal. B-Environ. 24 (2000) 265.Google Scholar
  18. 18.
    J. Daum and K.D. Vorlop, Chem. Ing. Tech. 70 (1998) 1567.Google Scholar
  19. 19.
    K. Daub, V.K. Wunder and R. Dittmeyer, Catal. Today 67 (2001)257.Google Scholar
  20. 20.
    D.H. Cloleman, R.E. White and D.T. Hobbs, J. Electrochem. Soc. 142 (1995) 1152.Google Scholar
  21. 21.
    E.E. Kalu, R.E. White and D.T. Hobbs, J. Electrochem. Soc. 143 (1996) 3094.Google Scholar
  22. 22.
    H. Li, J.Q. Chambers and D.T. Hobbs, J. Appl. Electrochem. 18 (1988) 454.Google Scholar
  23. 23.
    H. Li, D.H. Robertson, J.Q. Chambers and D.T. Hobbs, J. Electrochem. Soc. 135 (1988) 1154.Google Scholar
  24. 24.
    H.L. Lin, J.Q. Chambers and D.T. Hobbs, J. Electroalal.Chem. 256 (1988) 447.Google Scholar
  25. 25.
    J.D. Genders, D. Hartsough and D.T. Hobbs, J. Appl. Electrochem. 26 (1996) 1.Google Scholar
  26. 26.
    J.O.M. Bockris and J. Kim, J. Appl. Electrochem. 27 (1997) 623.Google Scholar
  27. 27.
    M. Waite, Water purification process, Patent GB 2348209; (Ionex Ltd., United Kingdom, 1998).Google Scholar
  28. 28.
    M. Waite, P.M. Tucker and B.E. Hayden, A processs for improving an electrode, Patent GB 2 365 023 B (Ionex Ltd., United Kingdom, 2000).Google Scholar
  29. 29.
    W. Plieth, in A.J. Bard (Ed), 'Encyclopedia of Electrochemistry of the Elements', Vol. 4, (Marcel Decker, New York, 1973).Google Scholar
  30. 30.
    M. Tokuoka, Collect. Czech. Chem. Commun. 4 (1932) 444.Google Scholar
  31. 31.
    G. Horanyi and E.M. Rizmayer, J. Electroanal. Chem. 188 (1985) 265.Google Scholar
  32. 32.
    O.A. Petrii and T.Y. Safonova, J. Electroanal. Chem. 331 (1992) 897.Google Scholar
  33. 33.
    M. da Cunha, J.P.I. De Souza and F.C. Nart, Langmuir 16 (2000) 771.Google Scholar
  34. 34.
    A.C. Chialvo, W.E. Triaca and A.J. Arvia, J. Electroanal. Chem. 237 (1987) 237.Google Scholar
  35. 35.
    R. Woods, in A.J. Bard (Ed), 'Electroanalytical Chemistry', Vol. 9 (Marcel Dekker, New York, 1976) p. 90.Google Scholar
  36. 36.
    M. Wasberg and G. Horanyi, Electrochim. Acta 40 (1995) 615.Google Scholar
  37. 37.
    C. Pallotta, N.R.D. Tacconi and A.J. Arvia, J. Electroanal. Chem. 159 (1983) 201.Google Scholar
  38. 38.
    E. Custidiano, S. Piovano, A.J. Arvia, A.C. Chialvo and M. Ipohorski, J. Electroanal. Chem. 221 (1987) 229.Google Scholar
  39. 39.
    I. Kostov and R.I. Kostov, 'Crystal Habits of Minerals' (Academic Publishing House and Pensoft, Sofia, 1999).Google Scholar
  40. 40.
    R.J. Davey, in E.J. de Jong and S.J. Jancic (Eds), 'Industrial Crystallization (7th Symposium, Warsaw)'', (North Holland, Amsterdam, 1979) p. 169.Google Scholar
  41. 41.
    J. Prywer and S. Krukowski, MRS Internet J. Nitride Semicond. Res. 3 (1998) 47.Google Scholar
  42. 42.
    J. Prywer, J. Crys. Growth 158 (1996) 568.Google Scholar
  43. 43.
    B.A. Averill, I.M.C.M. Rietjens, P.W.N.M. van Leeuwen and R.A. van Santen, in R.A. van Santen, P.W.N.M. van Leeuwen, J.A. Moulijn and B.A. Averill (Eds), 'Catalysis: An Integrated Approach', (Elsevier Science, Amsterdam, 1999).Google Scholar
  44. 44.
    A.K. Galwey, Adv. in Catal. 26 (1977) 247.Google Scholar
  45. 45.
    G.C. Bond, A.D. Hooper, J.C. Slaa and A.O. Taylor, J. Catal. 163 (1996) 319.Google Scholar
  46. 46.
    G.C. Bond and R.H. Cunningham, J. Catal. 166 (1997) 172.Google Scholar
  47. 47.
    G.C. Bond, Appl. Catal. 191 (2000) 23. 796Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Philip M. Tucker
    • 1
  • Michael J. Waite
    • 1
  • Brian E. Hayden
    • 2
  1. 1.Ionex LimitedGlos.UK
  2. 2.School of ChemistryThe University of SouthamptonSouthamptonUK

Personalised recommendations