Journal of Applied Electrochemistry

, Volume 34, Issue 4, pp 383–389 | Cite as

Electrochemical properties of cathode materials LiNi1−yCo y O2 synthesized using various starting materials

  • M.Y. Song
  • H. Rim
  • E. Bang


LiNi1−yCo y O2 samples were synthesized at 800 °C and 850 °C, by the solid-state reaction method, using the starting materials LiOH·H2O, Li2CO3, NiO, NiCO3, Co3O4 and CoCO3. The LiNi1−yCo y O2 synthesized using Li2CO3, NiO and Co3O4 exhibited the α-NaFeO2 structure of the rhombohedral system (space group \({R\bar 3m}\)). As the Co content increased, the lattice parameters a and c decreased. The reason is that the radius of the Co ion is smaller than that of the Ni ion. The increase in c/a shows that a two-dimensional structure develops better as the Co content increases. The LiNi0.7Co0.3O2 synthesized at 800 °C using LiOH · H2O, NiO and Co3O4 exhibited a larger first discharge capacity of 162 mAh g−1 than the other samples. The cycling performances of the samples with the first discharge capacity larger than 150 mAh g−1 were investigated. LiNi0.9Co0.1O2 synthesized at 850 °C using Li2CO3, NiO and Co3O4 showed excellent cycling performance. Samples with larger first discharge capacity will have a greater tendency for lattice destruction due to expansion and contraction during intercalation and deintercalation, than samples with smaller first discharge capacity. As the first discharge capacity increases, the capacity fading rate thus increases.

cycling performance discharge capacity lattice destruction LiNi1−yCoyO2 solid-state reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ohzuku and A. Ueda, J. Electrochem. 141 (1991) 2927.Google Scholar
  2. 2.
    J.R. Dahn and J.N. Reimer, J. Electrochem. 139 (1992) 209.Google Scholar
  3. 3.
    M. Yoshio, H. Tanaka, K. Tominaga and H. Noguchi, J. Power Sources 40 (1992) 347.Google Scholar
  4. 4.
    J.M. Tarascon, H. Tanaka, K. Tominaga and H. Noguchi, J. Power Sources 43 (1993) 689.Google Scholar
  5. 5.
    K. Brandt, Solid State Ionics 69 (1994) 173.CrossRefGoogle Scholar
  6. 6.
    B. Scrosati, J. Electrochem. Soc. 139 (1992) 2776.Google Scholar
  7. 7.
    J.R. Dahn, U. von Sacken, M.R. Jukow and H. Aljanaby, J. Electrochem.Soc. 138 (1991) 2207.Google Scholar
  8. 8.
    K. Ozawa, Solid State Ionics 69 (1994) 212.CrossRefGoogle Scholar
  9. 9.
    M.Y. Song and R. Lee, J. Power Sources 111(1) (2002) 97.Google Scholar
  10. 10.
    M.M. Thackeray, W.I.F. David, P.G. Bruce and J.B. Goodenough, Mater. Res. Bull. 18 (1983) 461.CrossRefGoogle Scholar
  11. 11.
    A. Momchilov, V. Manev and A. Nassalevska, J. Power Sources 41 (1993) 305.Google Scholar
  12. 12.
    G. Pistoia and G. Wang, J. Electrochem. Soc. 66 (1993) 135.Google Scholar
  13. 13.
    A. Yamada, K. Miura, K. Hinokuma and M. Tanaka, J. Electrochem. Soc. 142 (1995) 2149.Google Scholar
  14. 14.
    Y. Xia and M. Yoshia, J. Electrochem. Soc. 143 (1996) 825.Google Scholar
  15. 15.
    M.Y. Song and D.S. Ahn, Solid State Ionics 112 (1998) 21.Google Scholar
  16. 16.
    M.Y. Song, D.S. Ahn and H.R. Park, J. Power Sources 83 (1999) 57.Google Scholar
  17. 17.
    D.S. Ahn and M.Y. Song, J. Electrochem. Soc. 147 (2000) 874.Google Scholar
  18. 18.
    C. Delmas and I. Saadoune, Solid State Ionics 53–56 (1992) 370.Google Scholar
  19. 19.
    A. Ueda and T. Ohzuku, J. Electrochem. Soc. 141 (1994) 8.Google Scholar
  20. 20.
    M. Menetrier, A. Rougier and C. Delmas, Solid State Communications 90(7) (1994) 439.CrossRefGoogle Scholar
  21. 21.
    R. Alcantara, J. Morales and J.L. Tirado, J. Electrochem. Soc. 142 (1995) 12.Google Scholar
  22. 22.
    B. Banov, J. Bourilkov and M. Mladenov, J. Power Sources 54 (1995) 268.Google Scholar
  23. 23.
    A. Rougier, I. Saadoune, P. Gravereau, P. Willmann and C. Delmas, Solid State Ionics 90 (1996) 83.CrossRefGoogle Scholar
  24. 24.
    Y.M. Choi, S.I. Pyun and S.I. Moon, Solid State Ionics 89 (1996) 43.CrossRefGoogle Scholar
  25. 25.
    K. Kubo, S. Arai, S. Yamada and M. Kanda, J. Power Sources 81–82 (1999) 599.Google Scholar
  26. 26.
    E. Levi, M.D. Levi, G. Salitra, D. Aurbach, R. Oesten, U. Heider and L. Heider, Solid State Ionics 126 (1999) 97.Google Scholar
  27. 27.
    R.K.B. Gover, R. Kanno, B.J. Mitchell, A. Hirano and Y. Kawamoto, J. Power Sources 97–98 (2001) 316.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Division of Advanced Materials Engineering, Research Center of Industrial Technology, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations