Journal of Applied Electrochemistry

, Volume 34, Issue 3, pp 301–304

Gel polymer electrolytes based on a novel quaternary ammonium salt for dye-sensitized solar cells

  • J. Kang
  • W. Li
  • X. Wang
  • Y. Lin
  • X. Li
  • X. Xiao
  • S. Fang
Article

Abstract

Gel polymer electrolytes were prepared with polyacrylonitrile (PAN) and solutions of a novel quaternary ammonium salt, polysiloxane with quaternary ammonium side groups (PSQAS), in a mixture of ethylene carbonate (EC) and propylene carbonate (PC). The influences of PAN content and salt concentration on the ionic conductivity have been investigated. The ionic conductivity can be further improved with the use of the mixtures of KI and PSQAS, which can be expected as inorganic-organic salts. The gel polymer electrolytes were used in the fabrication of the dye-sensitized solar cells with a nanoporous TiO2 working electrode, cis-di(thiocyanato)-N,N′-bis(2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium(II) complex dye and a counter electrode based on platinized conducting glass. The cells showed open-circuit voltages (Voc) around 0.6 V and short-circuit current densities (Jsc) larger than 7.5 mA cm−2 under 60 mW cm−2 irradiation. The fill factors (FF) and energy conversion efficiencies (η) of the cells were calculated to be higher than 0.56 and 4.4%, respectively.

dye-sensitized solar cell gel polymer electrolyte ionic conductivity polyacrylonitrile quaternary ammonium salt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Quartarone, P. Mustarelli and A. Magistris, Solid State Ionics 110 (1998) 1.CrossRefGoogle Scholar
  2. 2.
    K.M. Abraham and M. Alamgir, J. Electrochem. Soc. 137 (1990) 1657.Google Scholar
  3. 3.
    S. Slane and M. Salomon, J. Power Sources 55 (1995) 7.Google Scholar
  4. 4.
    B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen and F. Wang, Solid State Ionics 85 (1996) 79.CrossRefGoogle Scholar
  5. 5.
    B. O'Regan and M.Grätzel, Nature 353 (1991) 737.CrossRefGoogle Scholar
  6. 6.
    A. Hagfeldt and M. Grätzel, Chem., Rev. 95 (1995) 49.CrossRefGoogle Scholar
  7. 7.
    A.F. Nogueira and M. Paoli, Sol. Energy Mater. Sol. Cells 61 (2000) 135.Google Scholar
  8. 8.
    F. Cao, G. Oskam and P. Searson, J. Phys. Chem. 99 (1995) 17071.Google Scholar
  9. 9.
    K. Tennakone, G.K.R. Senadeera, V.P.S. Perera, I.R.M. Kottegoda and L.A.A. De Silva, Chem. Mater. 11 (1999) 2474.CrossRefGoogle Scholar
  10. 10.
    O.A. Ileperuma, M.A.K.L. Dissanayake and S. Somasundaram, Electrochim. Acta 47 (2002) 2801.CrossRefGoogle Scholar
  11. 11.
    J.J Kang, S.B. Fang and X. Zhou, Chem. Res. Chinese U. 18 (3, Suppl.) (2002) 199.Google Scholar
  12. 12.
    S.S. Sekhon, N. Arora and S.A. Agnihotry, Solid State Ionics 136-137 (2000) 1201.Google Scholar
  13. 13.
    J.Y. Kim and S.H. Kim, Solid State Ionics 124 (1999) 91.CrossRefGoogle Scholar
  14. 14.
    S. Rajendran and T. Uma, J. Power Sources 88 (2000) 282.Google Scholar
  15. 15.
    S-W. Hu and S-B. Fang, Electrochim. Acta 44 (1999) 2721.Google Scholar
  16. 16.
    S-W. Hu and S-B. Fang, Macromol. Rapid Commun. 19 (1998) 539.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Kang
    • 1
  • W. Li
    • 1
  • X. Wang
    • 1
  • Y. Lin
    • 1
  • X. Li
    • 1
  • X. Xiao
    • 1
  • S. Fang
    • 1
  1. 1.Institute of ChemistryChinese Academy of SciencesBeijingP.R. China

Personalised recommendations