Journal of Applied Electrochemistry

, Volume 34, Issue 2, pp 159–168 | Cite as

Electrochemical impedance spectroscopy of the alkaline manganese dioxide electrode



Two-probe electrochemical impedance spectroscopy measurements were carried out on the electrolytic manganese dioxide electrode in concentrated KOH electrolytes under a variety of experimental conditions. These included varying the electrode thickness and compaction pressure, electrolyte content and concentration, degree of manganese dioxide reduction and the presence of TiO2 (anatase) as an additive. The overall electrode impedance was found to decrease when thin electrodes, prepared under high compaction pressures, with an excess of electrolyte, were used. The impedance of the EMD/electrolyte interface was also minimized when 5.0 M KOH was used as the electrolyte. This correlates with a maximum in electrolyte conductivity. The electrode impedance also increased as the degree of EMD reduction was increased, as was expected. Under these experimental conditions the electrode impedance increased in the presence of TiO2 (anatase), which has negative implications for its commercial use. This conclusion was reached despite the differences in experimental conditions between this work and in commercial applications. An equivalent circuit was also derived and used as an aid in interpreting the impedance data.

aqueous batteries battery materials electrochemical impedance spectroscopy manganese dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y.F. Yao, N. Gupta and H.S. Wroblowa, J. Electroanal. Chem. 223 (1987) 107.Google Scholar
  2. 2.
    J. Daniel-Ivad and K. Kordesch, in P.D. Bennett and S. Gross (Eds), 'Proceedings of the Symposium on Aqueous Batteries' Vol. 96-16, (The Electrochemical Society, Inc., 1996) p. 11.Google Scholar
  3. 3.
    A. Kozawa and J.F. Yeager, J. Electrochem. Soc. 112 (1965) 959.Google Scholar
  4. 4.
    A. Kozawa, T. Kalnoki-Kis and J.F. Yeager, J. Electrochem. Soc. 113 (1966) 405.Google Scholar
  5. 5.
    A. Kozawa and R.A. Powers, J. Electrochem. Soc. 113 (1966) 870.Google Scholar
  6. 6.
    A. Kozawa and R.A. Powers, Electrochem. Tech. 5 (1967) 535.Google Scholar
  7. 7.
    A. Kozawa and R.A. Powers, J. Electrochem. Soc. 115 (1968) 122.Google Scholar
  8. 8.
    A. Kozawa and J.F. Yeager, J. Electrochem. Soc. 115 (1968) 1003.Google Scholar
  9. 9.
    A. Kozawa and R.A. Powers, J. Chem. Ed. 49 (1972) 587.Google Scholar
  10. 10.
    D.A.J. Swinkels, K.E. Anthony, P.M. Fredericks and P.R. Osborn, J. Electroanal. Chem. 168 (1984) 433.Google Scholar
  11. 11.
    Y. Chabre and J. Pannetier, Prog. Solid State Chem. 23 (1995) 1.Google Scholar
  12. 12.
    J. Fitzpatrick and F.L. Tye, J. Appl. Electrochem. 21 (1991) 130.Google Scholar
  13. 13.
    J.E. Mieczkowski and S.P. Markfort, U.S. Patent 5,342,712 (1994).Google Scholar
  14. 14.
    J.E. Mieczkowski and M.W. Howard, U.S. Patent 5,516,604 (1996).Google Scholar
  15. 15.
    S.M. Davis, C.P. Haines, A.A. Leef and P.R. Moses, U.S. Patent 5,532,085 (1996).Google Scholar
  16. 16.
    K.J. Vetter and N. Jaeger, Electrochim. Acta 11 (1966) 401.Google Scholar
  17. 17.
    B.A. Boukamp, Solid State Ionics 18 (1986) 136.Google Scholar
  18. 18.
    B.A. Boukamp, Solid State Ionics 20 (1986) 30.Google Scholar
  19. 19.
    D.D. MacDonald, in R. Varma and J.R. Selman (Eds),'Techniques for Characterization of Electrodes and Electrochemical Processes', Vol. 11 (J. Wiley and Sons, Inc., 1991).Google Scholar
  20. 20.
    S.R. Narayanan, D.H. Shen, S. Surampudi, A.I. Attia and G. Halpert, J. Electrochem. Soc. 140 (1993) 1854.Google Scholar
  21. 21.
    C. Ho, I.D. Rastrick and R.A. Huggins, J. Electrochem. Soc. 127 (1980) 343.Google Scholar
  22. 22.
    J.E.B. Randles, Discuss. Faraday Soc. 1 (1947) 11.Google Scholar
  23. 23.
    J.R. MacDonald, Solid State Ionics 13 (1984) 147.Google Scholar
  24. 24.
    W. Scheider, J. Phys. Chem. 79 (1975) 127.Google Scholar
  25. 25.
    R. de Levie, Electrochim. Acta 10 (1965) 113.Google Scholar
  26. 26.
    M.G.S.R. Thomas, P.G. Bruce and J.B. Goodenough, J. Electrochem. Soc. 132 (1985) 1521.Google Scholar
  27. 27.
    P.W. Atkins, 'Physical Chemistry', (Oxford University Press, Oxford, 4th edn, 1990).Google Scholar
  28. 28.
    X. Xia, H. Li and Z.H. Chen, J. Electrochem. Soc. 136 (1989) 266.Google Scholar
  29. 29.
    S.W. Donne; Unpublished results.Google Scholar
  30. 30.
    'International Critical Tables of Numerical Data, Physics, Chemistry and Technology', (McGraw-Hill Book Co. New York, 1929).Google Scholar
  31. 31.
    A.J. Bard and L.R. Faulkner, 'Electrochemical Methods: Fundamentals and Applications', (John Wiley and Sons, Inc., New York, 1980).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Eveready Battery Company, Inc.WestlakeUSA
  2. 2.Department of ChemistryUniversity of California, Santa BarbaraSanta BarbaraUSA

Personalised recommendations