Interface Science

, Volume 12, Issue 2–3, pp 267–275

A New Method to Measure Small Amounts of Solute Atoms on Planar Defects and Application to Inversion Domain Boundaries in Doped Zinc Oxide

  • T. Walther
  • N. Daneu
  • A. Recnik


We demonstrate the application of a new method of analytical transmission electron microscopy for measuring very accurately small amounts of solute atoms within a well-defined planar defect such as a stacking fault, grain boundary or an interface. The method is based on acquiring several spectra with different electron beam diameters from the same position centred on the defect. It can be applied to energy-dispersive X-ray microanalysis (EDXS) or electron energy-loss spectroscopy (EELS) and does not necessitate a scanning unit. The accuracy has been tested numerically under different conditions using simulations for a specific geometry and has been found to be substantially better than that of any other current standard technique. Our calculations suggest an extremely high accuracy theoretically achievable in the determination of e.g. the Gibbsian solute excess or the doping level of a grain boundary down to about ±1% of an effective monolayer, i.e. ±0.1 atoms/nm2 under typical experimental conditions. The method has been applied to zinc oxide, which forms inversion domain boundaries (IDBs) when doped with different transition metal oxides such as SnO2 or Sb2O3. We obtained an experimental precision of ±0.4 atoms/nm2, which has allowed us to solve the atomic structure of the IDBs.

analytical TEM EDX EDS EELS doped ZnO IDB chemical composition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.D. Hondros and M.P. Seah, Scripta Metall. 6(10), 1007 (1972).Google Scholar
  2. 2.
    C.J. McMahon Jr. and L. Marchut, J. Vac. Sci. Tecnol. 15(2), 450 (1978).Google Scholar
  3. 3.
    M.P. Seah and E.D. Hondros, Proc. Royal Soc. London A 335(1601), 191 (1973).Google Scholar
  4. 4.
    H. Müllejans and J. Bruley, Ultramicroscopy 53(4), 351 (1994).Google Scholar
  5. 5.
    L.E. Rehn, P.R. Okamoto, D.I. Potter, and H. Wiedersich, J. Nucl. Mater. 74(2), 242 (1978).Google Scholar
  6. 6.
    A. Recnik, M. Ceh, and D. Kolar, J. Eur. Ceram. Soc. 21(10/11), 2117 (2001).Google Scholar
  7. 7.
    A. Recnik, N. Daneu, T. Walther, and W. Mader, J. Am. Ceram. Soc. 84(11), 2657 (2001).Google Scholar
  8. 8.
    J. Bruley, U. Bremer, and V. Krasevec, J. Am. Ceram. Soc. 75(11), 3127 (1992).Google Scholar
  9. 9.
    J. Bruley, T. Höche, H.J. Kleebe, and M. Rühle, J. Am. Ceram. Soc. 77(9), 2273 (1994).Google Scholar
  10. 10.
    V.J. Keast and D.B. Williams, J. Microsc. 199(1), 45 (2000).Google Scholar
  11. 11.
    U. Alber, H. Müllejans, and M. Rühle, Ultramicroscopy 69(2), 105 (1997).Google Scholar
  12. 12.
    J. Bruley, J. Cho, H.M. Chan, M.P. Harmer, and J.M. Rickman, J. Am. Ceram Soc. 82(10), 2865 (1999).Google Scholar
  13. 13.
    V.J. Keast and D.B. Williams, Acta Mater. 47(15/16), 3999 (1999).Google Scholar
  14. 14.
    J. Bruley, Philos. Mag. Lett. 66(1), 47 (1992).Google Scholar
  15. 15.
    H. Gu, R.M. Cannon, and M. Rühle, J. Mater. Res. 13(2), 376 (1998).Google Scholar
  16. 16.
    D.A. Shashkov and D.N. Seidman, Mater. Science Forum 207(1), 429 (1996).Google Scholar
  17. 17.
    D.A. Shashkov, D.A. Muller, and D.N. Seidman, Acta Mater. 47(15/16), 3953 (1999).Google Scholar
  18. 18.
    D. Isheim, O.C. Hellman, D.N. Seidman, F. Danoix, A. Bostel, and D. Blavette, Microsc. Microanal. 7(5), 424 (2001).Google Scholar
  19. 19.
    J.J. Hren, J.I. Goldstein, and D.C. Joy (Eds.), in Introduc-tion to Analytical Electron Microscopy (Plenum, New York, 1979).Google Scholar
  20. 20.
    S.A. Collett, L.M. Brown, and M.H. Jacobs, in Proc.Quant.Mi-croanal.with High Spatial Resolution, Manchester (The Metals Society, London, 1981), p. 159.Google Scholar
  21. 21.
    T. Walther and C.J. Humphreys, J. Cryst. Growth 197(1/2), 113 (1999).Google Scholar
  22. 22.
    V.J. Keast and D.B. Williams, in Proc.EMAG 97, Cambridge, edited by J.M. Rodenburg, Inst. Phys. Conf. Ser. (IoP, Bristol, 1997), Vol. 153, p. 299.Google Scholar
  23. 23.
    R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, S.M. Bruemmer, and E.A. Kenik, J. Nucl. Mater. 211(1), 70 (1994).Google Scholar
  24. 24.
    D.B. Williams, A.J. Papworth, and M. Watanabe, J. Electr. Microsc. 51(S), 113 (2002).Google Scholar
  25. 25.
    G. Drazic and M. Komac, in Proc.13th Int.Cong.Electron Microsc., edited by B. Jouffrey and C. Colliex (les editions de physique, Les Ulis, Paris, 1994), Vol. 1, p. 685.Google Scholar
  26. 26.
    J.I. Goldstein, J.L. Costley, G.W. Lorimer, and S.J.B. Reed, in Proc.Anal.Electr.Microsc., Scanning Electron Microsc. (IIT Res. Inst., Chicago, 1977), Vol. 1, p. 315.Google Scholar
  27. 27.
    S.J.B. Reed, Ultramicroscopy 7(4), 405 (1982).Google Scholar
  28. 28.
    T. Walther, A. Recnik, and N. Daneu, in Proc.15th Int.Cong.Electron Microsc., edited by J. Engelbrecht, M. Witcomb, and R. Cross (Microsc. Soc. South Africa, Onderstepoort, Durban, 2002), Vol. 1, p. 535.Google Scholar
  29. 29.
    N. Daneu, A. Recnik, S. Bernik, and D. Kolar, J. Am. Ceram Soc. 83(12), 3165 (2000).Google Scholar
  30. 30.
    N. Daneu, T. Walther, and A. Recnik, in Proc.15th Int.Cong.Electron Microsc., edited by J. Engelbrecht, T. Sewell, M. Witcomb, and R. Cross (Microsc. Soc. South Africa, Onderstepoort, Durban, 2002), Vol. 3, p. 63.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Walther
    • 1
  • N. Daneu
    • 2
  • A. Recnik
    • 2
  1. 1.Institut für Anorganische ChemieUniversität BonnBonnGermany
  2. 2.Department for Nanostructured MaterialsJozef Stefan InstituteLjubljanaSlovenia

Personalised recommendations