Inorganic Materials

, Volume 40, Issue 11, pp 1229–1232 | Cite as

Optical Losses in As-Prepared and Gamma-Irradiated Microstructured Silica-Core Optical Fibers

  • A. F. Kosolapov
  • I. V. Nikolin
  • A. L. Tomashuk
  • S. L. Semjonov
  • M. O. Zabezhailov
Article

Abstract

The optical loss spectra of as-prepared and gamma-irradiated microstructured multimode fibers with KU-1 silica cores are analyzed. Experimental evidence is presented that leakage losses in such fibers can be prevented by producing, in their cladding, two layers of channels separated by thin glass walls. The strong absorption at 630 nm in the radiation-induced loss spectra of the fibers is shown to arise from nonbridging oxygen. The mechanisms underlying the formation of precursors to this color center are discussed, and the possible approaches to suppressing the 630-nm absorption are outlined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Richardson, D.J., Furusawa, K., Ebendorf-Heidepriem, H., et al., Practical Applications of Holey Optical Fiber, Optical Fiber Communication Conf., Los Angeles, 2004.Google Scholar
  2. 2.
    Brichard, B., Van Uffelen, M., Fernandez, A.F., et al., Round-Robin Evaluation of Optical Fibres for Plasma Diagnostics, Fusion Eng. Des., 2001, vol. 56/57, pp. 917–921.Google Scholar
  3. 3.
    Decreton, M., Massaut, V., and Borgermans, P., Potential Benefit of Fibre Optics in Nuclear Applications: The Case of the Decommissioning and Waste Storage Activities, Proc. SPIE-Int. Soc. Opt. Eng., 1994, vol. 2425, pp. 2–10.Google Scholar
  4. 4.
    Griscom, D.L., Golant, K.M., Tomashuk, A.L., et al., Gamma-Radiation Resistance of Aluminum-Coated All-Silica Optical Fibers Fabricated Using Different Types of Silica in the Core, Appl. Phys. Lett., 1996, vol. 69, no. 3, pp. 322–324.Google Scholar
  5. 5.
    Nagasawa, K., Tohmon, R., and Ohki, Y., Effect of Cladding Material on 2-eV Optical Absorption in Pure-Silica Core Fibers and Method to Suppress the Absorption, Jpn. J. Appl. Phys., 1987, vol. 26, pp. 148–151.Google Scholar
  6. 6.
    Buriukov, A.S., Dianov, E.M., Golant, K.M., et al., Synthesis of Fluorine-Doped Silica Glass by Means of an Outside Deposition Technique Using a Microwave Plasma Torch, Sov. Lightwave Commun., 1993, vol. 3, pp. 1–12.Google Scholar
  7. 7.
    Girard, S., Yahya, A., Boukenter, A., et al., γ., 2002, vol. 38, no. 20, pp. 1169–1171.Google Scholar
  8. 8.
    Stone, J., Interaction of Hydrogen and Deuterium with Silica Optical Fibers: A Review, J. Lightwave Technol., 1987, vol. 5, pp. 712–731.Google Scholar
  9. 9.
    Hack, H., Kersten, R.Th., and Weingartner, Th., Cooling Rate in Fiber Drawing Process Governs the Strength of the 630 nm-Absorption, J. Opt. Commun., 1988, vol. 9, pp. 29–30.Google Scholar
  10. 10.
    Griscom, D.L., Radiation Hardening of Pure-Silica-Core Optical Fibers by Ultra-High-Dose γ., 1995, vol. 77, pp. 5008–5013.Google Scholar
  11. 11.
    Amossov, A.V. and Rybaltovsky, A.O., Radiation Color Center Formation in Silica Glasses: A Review of Photoand Thermo-Chemical Aspects of the Problem, J. Non-Cryst. Solid s, 1994, vol. 179, pp. 226–234.Google Scholar
  12. 12.
    Hayashi, Y., Okuda, Y., Mitera, H., and Kato, K., Formation of Drawing-or Radiation-Induced Defects in Germanium-Doped Silica Core Optical Fiber, Jpn. J. Appl. Phys.,1994, vol. 33, pp. L233-L234.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. F. Kosolapov
    • 1
  • I. V. Nikolin
    • 1
  • A. L. Tomashuk
    • 1
  • S. L. Semjonov
    • 1
  • M. O. Zabezhailov
    • 1
  1. 1.Fiber Optics Research Center, Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations