Inorganic Materials

, Volume 40, Issue 5, pp 509–515

Structure and Magnetic Properties of Polymer Microspheres Filled with Magnetite Nanoparticles

  • R. A. Ali-zade


The structure and magnetic properties of collagen microspheres filled with magnetite nanoparticles are studied. The average interparticle separation in the polymer matrix and the size of magnetite nanoparticles before and after the introduction of the nanoparticles into the matrix are determined using electron microscopy. The magnetization curve of the microspheres has a superparamagnetic character. The magnetite nanoparticles undergo no aggregation during the synthesis of microspheres and are evenly distributed over the matrix. The magnetic susceptibility data for magnetic polymer microspheres of different diameters suggest that, at small diameters (<300 μm), all of the nanoparticles, aligned in chains, contribute to magnetization; at large diameters, some of the chains give way to clusters, the chains are shorter, and, accordingly, the susceptibility is lower.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roco, M.C., Nanoparticles and Nanotechnology Research, J. Nanoparticle Res., 1999, vol. 1, no. 1, pp. 1-6.Google Scholar
  2. 2.
    Kronmüller, H., Fischer, R., Bachmann, M., and Leineweber, T., Magnetization Processes in Small Particles and Nanocrystalline Materials, J. Magn. Magn. Mater., 1999, vol. 203, pp. 12-17.Google Scholar
  3. 3.
    Barbic, M., Single Domain Magnets in Bio-Medical Applications, Eur. J Cells Mater., 2002, vol. 3, suppl. 2, pp. 132-134.Google Scholar
  4. 4.
    Buryakov, A.N., Gritskova, I.A., Zubov, V.P., et al., USSR Inventor's Certificate no. 1628478, Byull. Izobret., 1991, no. 6, p. 194.Google Scholar
  5. 5.
    Turkin, S.I., Lukin, Yu.V., Markvicheva, E.A., et al., USSR Inventor's Certificate no. 1486515, Byull. Izobret., 1989, no. 22, p. 100.Google Scholar
  6. 6.
    Turkin, S.I., Lukin, Yu.V., Markvicheva, E.A., et al., USSR Inventor's Certificate no. 1567623, Byull. Izobret., 1990, no. 20, p. 105.Google Scholar
  7. 7.
    Bulatov, M.I. and Kalinkin, I.P., Prakticheskoe rukovodstvo po fotokolorimetricheskim i spektrofotometricheskim metodam analiza (A Practical Guide to Photocolorimetry and Spectrophotometry), Leningrad: Khimiya, 1976.Google Scholar
  8. 8.
    LKB UM IV Ultrotome-2128, Bromma: LKB Produkter AB, 1988.Google Scholar
  9. 9.
    Plyavin'sh, Yu.A. and Blum, E.Ya., Magnetic Properties of Blood Cells and Their Para-and Diamagnetic Phoresis via High-Gradient Magnetic Separation, Magn. Gidrodin., 1983, no. 4, pp. 3-14.Google Scholar
  10. 10.
    Ali-zade, R.A., Determination of Histogramme of Distribution of Experimental Data, Physica (Amsterdam), 1998, vol. 63, suppl., p. 406.Google Scholar
  11. 11.
    Bibik, E.E., Matygullin, B.Ya., Raikher, Yu.L., and Shliomis, M.I., Magnetostatic Properties of Magnetite Colloids, Magn. Gidrodin., 1973, no. 1, pp. 68-72.Google Scholar
  12. 12.
    Shliomis, M.I., Magnetic Fluids, Usp. Fiz. Nauk, 1974, vol. 112, no. 3, pp. 427-458.Google Scholar
  13. 13.
    Brown, W.F., Jr., Thermal Fluctuations of a Single-Domain Particle, Phys. Rev., 1963, vol. 130, pp. 1677-1686.Google Scholar
  14. 14.
    Feller, W., An Introduction to Probability Theory and Its Applications, New York: Wiley, 1968. Translated under the title Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Moscow: Mir, 1984.Google Scholar
  15. 15.
    Ali-zade, R.A., Morphology of Magnetite Nanoparticles Prepared by Chemical Vapor Deposition, Izv. AN Azerb., 2000, vol. 20, no. 2, pp. 88-94.Google Scholar
  16. 16.
    Ali-zade, R.A., Magnetization of Nanoparticles of Magnetite with Magnetic Dipole-Dipole Interaction in Disperse Mediums, Physica (Azerbaijan), 1999, vol. 5, no. 1, pp. 37-39.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • R. A. Ali-zade
    • 1
  1. 1.Institute of PhysicsAcademy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations