Instruments and Experimental Techniques

, Volume 47, Issue 2, pp 214–220 | Cite as

A Compact Neutral-Particle Analyzer for Plasma Diagnostics

  • F. V. Chernyshev
  • V. I. Afanasyev
  • A. V. Dech
  • M. Kick
  • A. I. Kislyakov
  • S. S. Kozlovskii
  • A. Kreter
  • M. I. Mironov
  • M. P. Petrov
  • S. Ya. Petrov

Abstract

A new compact neutral-particle analyzer (CNPA) developed at the Ioffe Physicotechnical Institute, Russian Academy of Sciences, is described. The device is used as a mass and energy spectrometer for the simultaneous analysis of the hydrogen (0.8–80 keV) and deuterium (0.66–36 keV) charge-exchange fluxes emitted by a plasma. A thin (100 Å) diamond-like foil is used for stripping instead of the conventional method of stripping in gas. The analyzing magnetic field is produced by two powerful (1 T) permanent NdFeB magnets instead of conventional electromagnets. These two innovations have made it possible to decrease considerably the size (169 × 302 × 326 mm) and weight (42.5 kg) of the analyzer. To increase detection efficiency, the device uses additional electrostatic acceleration of ions scattered by the stripping foil and provides a magnetic field configuration with two-coordinate focusing. The analyzer has been used in experiments on the Wendelstein 7-AS stellarator at the Max Planck Institute of Plasma Physics (Garching, Germany). The results of the first measurements performed using this analyzer are described.

REFERENCES

  1. 1.
    Afrosimov, V.V., Berezovskii, E.L., Gladkovskii, I.P., et al., Sov. Phys. Tech. Phys., 1975, vol. 20, p. 33.Google Scholar
  2. 2.
    Gladkovsky, I.P., Izvozchikov, A.B., and Petrov, M.P., Nucl. Instrum. Methods Phys. Res., Sect. A, 1980, vol. 175, p. 441.Google Scholar
  3. 3.
    Hayashi, K., Hashimoto, K., and Yamato, H., Rev. Sci. Instrum., 1985, vol. 56, p. 359.Google Scholar
  4. 4.
    Davis, S.L., Müller D., and Keane, C.J, Rev. Sci. Instrum., 1983, vol. 54, p. 315.Google Scholar
  5. 5.
    Izvozchikov, A.B., Petrov, M.P., Petrov, S.Ya., et al., Sov. Phys. Tech. Phys., 1992, vol. 37, p. 201.Google Scholar
  6. 6.
    Kislyakov, A.I., Khudoleev, A.V., Kozlovskij, S.S., and Petrov, M.P., Fusion Eng. Des., 1997, vol. 107, p. 34.Google Scholar
  7. 7.
    Medely, S.S. and Roquemore, A.L., Rev. Sci. Instrum., 1998, vol. 69, p. 2651.Google Scholar
  8. 8.
    Afanasyev, V.I., Gondhalekar, A., Babenko, P.Yu., et al., Rev. Sci. Instrum., 2003, vol. 74, p. 2338.Google Scholar
  9. 9.
    Gott, Yu.V. and Motlich, A.G., Nucl. Instrum. Methods Phys. Res., Sect. A, 1978, vol. 155, p. 443.Google Scholar
  10. 10.
    Afrosimov, V.V., Gladkovskii, I.P., Gordeev, Yu.S., et al., Sov. Phys. Tech. Phys., 1961, vol. 5, p. 1378.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • F. V. Chernyshev
    • 1
  • V. I. Afanasyev
    • 1
  • A. V. Dech
    • 1
  • M. Kick
    • 2
  • A. I. Kislyakov
    • 1
  • S. S. Kozlovskii
    • 3
  • A. Kreter
    • 4
  • M. I. Mironov
    • 1
  • M. P. Petrov
    • 1
  • S. Ya. Petrov
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Max-Planck-Institut für PlasmaphysikAssociation Euratom-IPPGarchingGermany
  3. 3.St. Petersburg State Technical UniversitySt. PetersburgRussia
  4. 4.Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, Trilateral Euregio ClusterAssociation EuratomJülichGermany

Personalised recommendations