Advertisement

Instruments and Experimental Techniques

, Volume 47, Issue 1, pp 119–123 | Cite as

A Nanoindentation Method for Measuring the Young Modulus of Superhard Materials Using a NanoScan Scanning Probe Microscope

  • A. S. Useinov
Article

Abstract

A new method for measuring the Young modulus using a NanoScan scanning probe microscope is proposed. This method is based on measurements of the oscillation frequency of a probe that is in contact with the surface as a function of the probe–surface separation, and allows the Young modulus to be determined on a scale of a few hundreds of nanometers for many objects, including superhard materials. The error of the Young-modulus measurements does not exceed 10%. The results obtained with this method agree well with the data obtained using the standard nanoindentation technique within the accuracy of measurements. The proposed method is actually nondestructive, since the probe penetration depth into the surface does not exceed several nanometers and the diameter of the contact area is about several tens of nanometers. Thus, it ensures correct measurements of the elastic properties of thin films and separate components in complex multiphase structures.

Keywords

Physical Chemistry Thin Film Contact Area Penetration Depth Elastic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, p. 1564.Google Scholar
  2. 2.
    Doerner, M.F. and Nix, W.D., J. Mater. Res., 1986, vol. 1, p. 601.Google Scholar
  3. 3.
    Yamanaka, K. and Nakano, S., Appl. Phys. 1998, vol. 66, p. 313.Google Scholar
  4. 4.
    DeVecchio, D. and Bhushan, B., Rev. Sci. Instrum., 1997, vol. 68, no. 12, p. 4498.Google Scholar
  5. 5.
    Heuberger, M., Dietler, G., and Schlapbach, L., Nanotechnology, 1994, vol. 5, p. 12.Google Scholar
  6. 6.
    Gracias, D.H. and Somorjai, G.A., Macromolecules, 1998, vol. 31, p. 1269.Google Scholar
  7. 7.
    Vairac, P. and Cretin, B., Appl. Phys., 1998, vol. 66, p. 227.Google Scholar
  8. 8.
    Fabre, A., Finot, E., Demoment, J., et al., Rev. Sci. Instrum.,, 2001, vol. 72, no. 10, p. 3914.Google Scholar
  9. 9.
    Vanlandingham, M.R., McKnight, S.H., Palmese, G.R., et al., J. Mater. Sci. Lett., 1996, vol. 16, p. 117.Google Scholar
  10. 10.
    Kageshima, M., Imayoshi, T., Yamada, H., et al., Jpn. J. Appl. Phys., 1997, vol. 36, p. 7354.Google Scholar
  11. 11.
    Gogolinskii, K.V. and Reshetov, V.N., Zavod. Lab. Diagn. Mater., 1998, vol. 64, no. 6, p. 30.Google Scholar
  12. 12.
    Blank, V., Popov, M., Pivovarov, G., et al., J. Mater. Res., 1997, vol. 12, p. 3109.Google Scholar
  13. 13.
    Blank, V. et al., Diamond Relat. Mater., 1999, vol. 8, p. 1531.Google Scholar
  14. 14.
    Grudzinskaya, S., Kosakovskaya, Z.Ya., Reshetov, V.N., and Chaban, A.A., Acoust. Phys., 2001, vol. 47, no. 5, p. 548.Google Scholar
  15. 15.
    Timoshenko, S.P., and Goodier, J.N., Theory of Elasticity, New York: McGraw-Hill, 1970, 3rd ed. Translated under the title Teoriya uprugosti, Shapiro, G.S., Ed., Moscow: Nauka, 1979.Google Scholar
  16. 16.
    Blank, V., Popov, M., Lvova, N., et al., Diamond Relat. Mater., 1998, vol. 7, p. 427.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. S. Useinov
    • 1
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsTroitsk, Moscow oblastRussia

Personalised recommendations