Advertisement

Instruments and Experimental Techniques

, Volume 47, Issue 1, pp 1–31 | Cite as

Multichannel Spark Gaps with Control Bar Electrodes: Their Development and Application (A Review)

  • A. I. Gerasimov
Article

Abstract

Multichannel low-inductance (∼1 nH) gas-filled spark gaps (MSGs)1 with several tens of channels each, bar control electrodes designed for an operating voltage of ≤100 kV, and a switched current of up to 400 kA are reviewed. The control electrodes, made in the form of narrow thin plates, have an intermediate potential, are positioned in the gap between two common main electrodes (high-voltage and low-voltage (grounded)), and are oriented uniformly along their length. Upon a near-simultaneous change in the bars' potential in a time of <15 ns, applying a signal through trigger circuits disturbs the electric-field distribution in the gas volume. The field strength sharply increases at the electrode surfaces and especially at the edges of the bars, from which breakdowns develop synchronously from one electrode to another or simultaneously to both main electrodes. When the discharge formation is completed, the main electrodes of the MSGs are short-circuited by discharges through parallel channels (whose number is equal to the number of bars). These switches ensure the nanosecond accuracy of the operation delay relative to the trigger pulse at a breakdown-strength margin of up to 100%, determined by the pressure (>0.1 MPa) of the MSG-filling gas. Electrical circuits for initiating the discharge development in the MSGs, the transients in such circuits, and the factors affecting the parameters of processes and the gap-breakdown delay and rate are considered. Particular MSG designs, multicable systems for parallel triggering of a large number of MSGs, and the use of 48 four-channel 50-kV MSGs in the first iron-free LIA-2 linear electron accelerator (2 MeV, 25 kA, and 60 ns) created in 1967 are described. The successful operation of MSGs stimulated further studies and the development of efficient trigatrons for operating voltages of 100 and 500 kV. Up to 3000 MSGs of this type are used in new high-power linear electron accelerators. A low-impedance (0.45 Ω) generator of high-voltage pulses (50–200 kV) with a multicable output has been developed to synchronously trigger such large numbers of trigatrons as these.

Keywords

Thin Plate Operating Voltage Discharge Formation Parallel Channel Multicable System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Myrova, L.O. and Chepyzhenko, A.Z., Obespechenie stoikosti apparatury svyazi k ioniziruyushchim izlucheniyam (Provision of Stability of Communication Equipment under Ionising Radiations), Moscow: Radio i Svyaz', 1988, p. 51.Google Scholar
  2. 2.
    Bossamykin, V.S., Gerasimov, A.I., Klement'ev, A.P., and Pavlovskii, A.I., USSR Inventor's Certificate no. 205178, Byull. Izobret., 1967, no. 23, p. 68.Google Scholar
  3. 3.
    Bossamykin, V.S., Gerasimov, A.I., and Pavlovskii, A.I., USSR Inventor's Certificate no. 202365, Byull. Izobret., 1970, no. 31, p. 218.Google Scholar
  4. 4.
    Tekhnika bol'shikh impul'snykh tokov i magnitnykh polei (High Pulse Currents and Magnetic Fields Engineering), Komel'kov, V.S., Ed., Moscow: Atomizdat, 1970, pp. 107, 194.Google Scholar
  5. 5.
    Koval'chuk, B.M., Kremnev, V.V., and Potalitsyn, Yu.F., Sil'notochnye nanosekundnye kommutatory (High-Current Nanosecond Switches), Novosibirsk: Nauka, 1979, pp. 8, 17.Google Scholar
  6. 6.
    Martin, J.C., Multichannel Gaps. Aldermaston, Berks, 1970, SSWA (JCM) 703/27.Google Scholar
  7. 7.
    Rezvykh, K.A., Raschet elektrostaticheskikh polei (Calculation of Electrostatic Fields), Moscow: Energiya, 1967, p. 111.Google Scholar
  8. 8.
    Korolev, Yu.D. and Mesyats, G.A., Avtoemissionnye i vzryvnye protsessy v gazovom razryade (Field-Emission and Explosive Processes in Gas Discharge), Novosibirsk: Nauka, 1982, p. 12.Google Scholar
  9. 9.
    Korolev, Yu.D. and Mesyats, G.A., Fizika impul'snogo proboya gazov (Physics of Pulse Gas Breakdown), Moscow: Fizmatlit, 1991, p. 20, 66.Google Scholar
  10. 10.
    Daion, M.I., Dolgoshein, B.A., Efremenko, V.I., et al., Iskrovye kamery (Spark Chambers), Moscow: Atomizdat, 1967, p. 30.Google Scholar
  11. 11.
    K. von Vollrath and G. Thomer, Kurzzeitphysik, Wien, New York: Springer, 1967. Translated under the title Fizika bystroprotekayushchikh protsessov, Moscow: Mir, 1971, vol. 1, p. 96.Google Scholar
  12. 12.
    Gerasimov, A.I., Prib. Tekh. Eksp., 1996, no. 1, p. 65.Google Scholar
  13. 13.
    Kiselev, Yu.V., Sysun, V.I., Tukhas, V.A., et al., Elektron. Tekhn., Ser. 4: Elektrovakuum. Gazorazryadn. Prib., 1984, no. 5(104), p. 52.Google Scholar
  14. 14.
    Fletcher, R.C., Phys. Rev., 1949, vol. 76, no. 10, p. 1501.Google Scholar
  15. 15.
    Bradley, L.P., J. Appl. Phys., 1972, vol. 43, no. 3, p. 886.Google Scholar
  16. 16.
    Poltev, A.I., Konstruktsii i raschet elegazovykh apparatov vysokogo napryazheniya (Design and Calculation of SF6-Based High Voltage Devices), Leningrad: Energiya, 1979, pp. 15, 40.Google Scholar
  17. 17.
    Gerasimov, A.I., Kuleshev, G.D., Pavlovskii, A.I., et al., Prib. Tekh. Eksp., 1975, no. 5, p. 111.Google Scholar
  18. 18.
    Gerasimov, A.I. and Fedotkin, A.S., Prib. Tekh. Eksp., 1997, no. 2, p. 58.Google Scholar
  19. 19.
    Gerasimov, A.I. and Dubinov, E.G., Prib. Tekh. Eksp., 1981, no. 4, p. 133.Google Scholar
  20. 20.
    Matkhanov, P.N. and Gogolitsyn, L.Z., Raschet impul'snykh transformatorov (Calculation of Pulse Transformers), Leningrad: Energiya, 1980, p. 7.Google Scholar
  21. 21.
    Vdovin, S.S., Proektirovanie impul'snykh transformatorov (Design of Pulse Transformers), Leningrad: Energoatomizdat, 1991, p. 9.Google Scholar
  22. 22.
    Pavlovskii, A.I. and Bossamykin, V.S., At. Energ., 1974, vol. 37, no. 3, p. 228.Google Scholar
  23. 23.
    Kalantarov, P.L. and Tseitlin, L.A., Raschet induktivnostei (Calculation of Inductors), Leningrad: Energiya, 1970, p. 111.Google Scholar
  24. 24.
    Bossamykin, V.S., Gerasimov, A.I., Zenkov, D.I., et al., Gazorazryadnye pribory (Gas Discharge Devices), Moscow: Elektronika, 1970, no. 2(18), p. 94.Google Scholar
  25. 25.
    Pavlovskii, A.I., Gerasimov, A.I., Zenkov, D.I., et al., At. Energ., 1970, vol. 28, no. 5, p. 432.Google Scholar
  26. 26.
    Bossamykin, V.S., Gerasimov, A.I., and Gordeev, V.S., Vysokie plotnosti energii (High Energy Densities), Sarov: RFYaTs-VNIIEF, 1997, p. 107.Google Scholar
  27. 27.
    Bossamykin, V.S., Gerasimov, A.I., Zenkov, D.I., et al., Gazorazryadnye pribory (Gas Discharge Devices), Moscow: Elektronika, 1970, no. 2(18), p. 95.Google Scholar
  28. 28.
    Pavlovskii, A.I., Gerasimov, A.I., Zenkov, D.I., et al., Prib. Tekh. Eksp., 1970, no. 2, p. 122.Google Scholar
  29. 29.
    Dawson, G.A., Z. Fur. Physik, 1965, vol. 183, no. 2, p. 172.Google Scholar
  30. 30.
    Markins, D., IEEE Trans. Nucl. Sci., 1971, vol. 18, no. 4, part 2, p. 296.Google Scholar
  31. 31.
    Zysin, Yu.A., Pavlovskii, A.I., Sklizkov, G.V., et al., Dokl. Akad. Nauk SSSR, 1965, vol. 160, no. 1, p. 68.Google Scholar
  32. 32.
    Pavlovskii, A.I., Kuleshov, G.D., Gerasimov, A.I., et al., Zh. Tekh. Fiz., 1977, vol. 47, no. 2, p. 370.Google Scholar
  33. 33.
    Pavlovskii, A.I., Kuleshov, G.D., Gerasimov, A.I., et al., Prib. Tekh. Eksp., 1976, no. 5, p. 20.Google Scholar
  34. 34.
    Pavlovskii, A.I., Gerasimov, A.I., Tananakin, V.A., and Dubinov, E.G., Prib. Tekh. Eksp., 1974, no. 4, p. 23.Google Scholar
  35. 35.
    Vengrov, R.M., Drozdovskii, A.A., Kapchinskii, I.M., et al., Trudy chetvertogo Vsesoyuznogo soveshchaniya po uskoritelyam zaryazhennykh chastits (Proc. of the Fourth All-Union Meeting on the Charged Particle Accelerators), Moscow: Nauka, 1975, vol. 1, p. 91.Google Scholar
  36. 36.
    Pavlovskii, A.I. and Bossamykin, V.S., USSR Inventor's Certificate no. 270913, Byull. Izobret., 1971, no. 34, p. 233.Google Scholar
  37. 37.
    Pavlovskii, A.I., Bossamykin, V.S., Kuleshov, G.D., et al., Dokl. Akad. Nauk SSSR, 1975, vol. 222, no. 4, p. 817.Google Scholar
  38. 38.
    Ginzburg, S.G., Metody resheniya zadach po perekhodnym protsessam v elektricheskikh tsepyakh (Methods for Solving Problems on Transient Processes in Circuits), Moscow: Vysshaya Shkola, 1967, p. 93.Google Scholar
  39. 39.
    Gerasimov, A.I., Fedotkin, A.S., and Slyusarenko, S.Ya., USSR Inventor's Certificate no. 601777, Byull. Izobret., 1978, no. 13, p. 203.Google Scholar
  40. 40.
    Gerasimov, A.I., Fedotkin, A.S., and Slyusarenko, S.Ya., USSR Inventor's Certificate no. 748606, Byull. Izobret., 1980, no. 26, p. 285.Google Scholar
  41. 41.
    Mesyats, G.A., Bychkov, Yu.P., and Kremnev, V.V., Usp. Fiz. Nauk, 1972, vol. 107, no. 2, p. 201.Google Scholar
  42. 42.
    Raether, H., Electron Avalanches and Breakdown in Gases, London: Butterworths, 1964, p. 247. Translated under the title Elektronnye laviny i proboi v gazakh, Moscow: Mir, 1968, p. 271.Google Scholar
  43. 43.
    Bossamykin, V.S., Gerasimov, A.I., Zenkov, D.I., et al., Prib. Tekh. Eksp., 1987, no. 2, p. 94.Google Scholar
  44. 44.
    Gerasimov, A.I., Fedotkin, A.S., Zenkov, D.I., and Nazarenko, S.T., Prib. Tekh. Eksp., 1998, no. 1, p. 96.Google Scholar
  45. 45.
    Pavlovskii, A.I., Bossamykin, V.S., Savchenko, V.A., et al., Dokl. Akad. Nauk SSSR, 1980, vol. 250, no. 5, p. 1118.Google Scholar
  46. 46.
    Bossamykin, V.S., Gerasimov, A.I., Klement'ev, A.P., et al., 9th IEEE Int. Pulsed Power Conf., Albuquerque, NM, 1993, Springfield (VA): NTIS, 1993, vol. 2, p. 898.Google Scholar
  47. 47.
    Pavlovskii, A.I., Popkov, N.F., Ryaslov, E.A., et al., Megagauss Magnetic Field Generation and Pulsed Power Application, Cowan, M. and Spielman, R., Eds., New York: Nova Science, 1994, p. 757.Google Scholar
  48. 48.
    Basmanov, V.F., Bossamykin, V.S., Gorokhov, V.V., et al., Kvantovaya Elektron. (Moscow), 1987, vol. 14, p. 422.Google Scholar
  49. 49.
    Pavlovskii, A.I., Bossamykin, V.S., Selemir, V.D., et al., Relyativistskaya vysokochastotnaya elektronika (Relativistic High-Frequency Electronics), Nizhni Novgorod: IPF RAN, 1992, no. 7, p. 81.Google Scholar
  50. 50.
    Bossamykin, V.S., Gerasimov, A.I., Pavlovskii, A.I., et al., Prib. Tekh. Eksp., 1997, no. 2, p. 5.Google Scholar
  51. 51.
    Pavlovskii, A.I., Bossamykin, V.S., Gerasimov, A.I., et al., 9th Int. Conf. on High-Power Particle Beams (BEAMS 92), Washington, DC, 1992, Springfield (VA): NTIS, 1992, vol. 1, p. 273.Google Scholar
  52. 52.
    Bossamykin, V.S., Gerasimov, A.I., Pavlovskii, A.I., et al., 9th IEEE Int. Pulsed Power Conf., Albuquerque, NM, 1993; Springfield (VA): NTIS, 1993, vol. 2, p. 993.Google Scholar
  53. 53.
    Pavlovskii, A.I., Bossamykin, V.S., Gerasimov, A.I., et al., Prib. Tekh. Eksp., 1998, no. 2, p. 13.Google Scholar
  54. 54.
    Bossamykin, V.S., Gordeev, V.S., Pavlovskii, A.I., et al., 9th IEEE Int. Pulsed Power Conf., Albuquerque, NM, 1993; Springfield (VA): NTIS, 1993, vol. 2, p. 905.Google Scholar
  55. 55.
    Bossamykin, V.S., Gordeev, V.S., Pavlovskii, A.I., et al., 9th IEEE Int. Pulsed Power Conf. Albuquerque, NM, 1993; Springfield (VA): NTIS, 1993, vol. 2, p. 910.Google Scholar
  56. 56.
    Bossamykin, V.S., Gerasimov, A.I., Zolotov, V.A., et al., Megagauss and Megaampere Pulse Technology and Applications, Chernyshov, V.K., Selemir, V.D., and Plyashkevich, L.N., Eds., Sarov: VNIIEF, 1997, part 2, p. 609.Google Scholar
  57. 57.
    Afanas'ev, B.A., Gerasimov, A.I., Kuleshov, G.D., et al., Prib. Tekh. Eksp., 1976, no. 3, p. 136.Google Scholar
  58. 58.
    Gordeev, V.S., Basmanov, V.F., Myskov, G.A., et al., VANT, Ser.: Yad. Fiz. Issled., 2001, no. 3, p. 50.Google Scholar
  59. 59.
    Pavlovskii, A.I., Tananakin, V.A., Grishin, A.V., et al., Abstracts of Papers, 9th IEEE Int. Pulsed Power Conf., Albuquerque, NM, 1993; Springfield (VA): NTIS, 1993, vol. 2, p. 913.Google Scholar
  60. 60.
    Voronin, V.V., Tananakin, V.A., Pavlov, S.S., et al., Abstracts of Papers, 11th IEEE Int. Pulsed Power Conf., Baltimore, Maryland, 1997, Springfield (VA): NTIS, 1997, vol. 2, p. 1566.Google Scholar
  61. 61.
    Selemir, V.D., Dubinov, A.E., Stepanov, N.V., et al., Antenny, 2001, no. 3(49), p. 6.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. I. Gerasimov
    • 1
  1. 1.Russian Federal Nuclear CenterAll-Russia Scientific Research Institute of Experimental PhysicsSarov, Nizhni Novgorod oblastRussia

Personalised recommendations