International Applied Mechanics

, Volume 39, Issue 11, pp 1271–1293 | Cite as

Nanomaterials: on the Mechanics of Nanomaterials

  • A. N. Guz
  • Ya. Ya. Rushchitskii


The paper presents a brief historical sketch of nanotechnology and scientific analysis of nanoparticles, nanoformations, and nanomaterials. Certain aspects of the state of the art and promising trends in the nanomechanics of materials and relationships among macromechanics, mesomechanics, micromechanics, and nanomechanics are analyzed

nanomaterials nanomechanics nanocomposites nanoparticles nanoformations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Guz, “Description and study of some nonclassical problems of fracture mechanics and related mechanisms,” Int. Appl. Mech., 36, No. 12, 1537–1564 (2000).Google Scholar
  2. 2.
    D. Leff, The Truth about Nanotechnology, (2002).Google Scholar
  3. 3.
    A. N. Guz (editor-in-chief), Mechanics of Composites [in Russian], in 12 vols., Naukova Dumka (vols. 1–4), A.S.K. (vols. 5–12), Kiev (1993–2003).Google Scholar
  4. 4.
    M. Roukes, “Plenty of room indeed,” Scientific American, September, 48–57 (2001).Google Scholar
  5. 5.
    Ya. Ya. Rushchitskii, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586–614 (2000).Google Scholar
  6. 6.
    L. J. Broutman and R. H. Krock (eds.), Modern Composite Materials, Addison-Wesley, Reading, Massachusetts (1967).Google Scholar
  7. 7.
    G. Stix, “Little big science,” Scientific American, September, 32–37 (2001).Google Scholar
  8. 8.
    V. E. Panin, V. E. Egorushkin, N. V. Makarov et al., Physical Mesomechanics and Computer Design of Materials [in Russian], in two vols., Nauka, Novosibirsk (1995).Google Scholar
  9. 9.
    L. P. Khoroshun, “Mathematical models and methods of the mechanics of stochastic composites,” Int. Appl. Mech., 36, No. 10, 1284–1316 (2000).Google Scholar
  10. 10.
    P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin—nanotube composites,” Science, 265, 1211–1214 (1994).Google Scholar
  11. 11.
    S. D. Akbarov and A. N. Guz, “Continuum approaches in the mechanics of curved composites and associated problems for structural members,” Int. Appl. Mech., 38, No. 11, 1285–1308 (2002).Google Scholar
  12. 12.
    S. D. Akbarov and A. N. Guz, “Mechanics of curved composites (piecewise-homogeneous body model),” Int. Appl. Mech., 38, No. 12, 1415–1439 (2002).Google Scholar
  13. 13.
    G. S. Attard, J. C. Glyde, and C. Göltner, “Liquid-crystalline phases as templates for the synthesis of mesoporous silica,” Nature, 378, 366–368 (1995).Google Scholar
  14. 14.
    G. S. Attard, M. Edgar, J. W. Emsley, and C. Göltner, “The true liquid crystal approach to mesoporous silica,” in: Proc. Symp. Materials Research Society, 425 (1996), pp. 179–189.Google Scholar
  15. 15.
    G. S. Attard, M. Edgar, and C. Göltner, “Inorganic nanostructures from lyotropic liquid crystal phases,” Acta Materiala, 46, 751–758 (1998).Google Scholar
  16. 16.
    G. S. Attard, C. Göltner, J. M. Corker, S. Henke, and R. H. Tempter, “Liquid crystal templates for nanostructured metals,” Angew. Chem., Int. Ed. Engl., 36, 1315–1317 (1997).Google Scholar
  17. 17.
    G. S. Attard, P. N. Barlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, “Mesoporous platinum films from lyotropic liquid crystalline phases,” Science, 278, 838–840 (1997).Google Scholar
  18. 18.
    I. Yu. Babich, A. N. Guz, and V. N. Chekhov, “The three-dimensional theory of stability of fibrous and laminated materials,” Int. Appl. Mech., 37, No. 9, 1103–1141 (2001).Google Scholar
  19. 19.
    C. Bai, Scanning Tunneling Microscopy and Its Application, Springer–Telos, Berlin (1999).Google Scholar
  20. 20.
    J. D. Bernal, “Concluding remarks. A discussion on new materials,” Proc. Roy. Soc., Ser. A, Math. Phys. Sci., 282, No. 1388, 147–154 (1964).Google Scholar
  21. 21.
    G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy—from birth to adolescence,” Review of Modern Physics, 59, 615–625 (1987).Google Scholar
  22. 22.
    C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, “Deformation of carbon nanotubes in nanotube-polymer composites,” Appl. Phys. Letts., 74, No. 22, 3317–3319 (1999).Google Scholar
  23. 23.
    P. J. F. Harris (ed.), Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century, Cambridge Univ. Press, Cambridge (2000).Google Scholar
  24. 24.
    M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, Carbon Nanotubes, Synthesis, Structure, Properties, and Applications, Springer-Verlag, Berlin (2001).Google Scholar
  25. 25.
    A. M. Cassel, J. A. Raymakers, J. Kong, and H. Dai, J. Phys. Chem., B103, 6484–6492 (1999).Google Scholar
  26. 26.
    T. Chang and H. Gao, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” J. Mech. Phys. Sol., 51, No. 6, 1059–1074 (2003).Google Scholar
  27. 27.
    Y. Chen, J. Fitzgerald, L. T. Chadderton, and L. Chaffron, “Investigation of nanoporous carbon powders produced by high energy ball milling and formation of carbon nanotubes during subsequent annealing,” J. Metastable Nanocryst. Mater., 2, No. 6, 375–380 (1999).Google Scholar
  28. 28.
    L. J. Broutman and R. H. Krock (eds.), Composite Materials, in 8 vols., Acad. Press, New York (1974).Google Scholar
  29. 29.
    C. A. Cooper, S. R. Cohen, A. H. Barber, and H. D. Wagner, “Detachment of nanotubes from a polymer matrix,” Appl. Phys. Letts., 81, No. 20, 3873–3875 (2002).Google Scholar
  30. 30.
    A. H. Cottrell, Theory of Crystal Dislocation, Blackie and Son Ltd., London–Glasgow (1964).Google Scholar
  31. 31.
    R. F. Curl, “Dawn of the fullerenes: conjecture and experiment (Nobel lecture),” Angew. Chem. Int. Ed. Engl., 36 (15), 1566–1577 (1997).Google Scholar
  32. 32.
    B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han, A. Zettl, and R. O. Ritchie, “Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes,” Mater. Sci. Eng., A, 334, 173–178 (2002).Google Scholar
  33. 33.
    M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, G. Dresselhaus, and R. Saito, “Raman spectroscopy on one isolated carbon nanotube,” Phys. B, 323, 15–20 (2002).Google Scholar
  34. 34.
    E. K. Drexler, Engines of Creation, the Coming Age of Nanotechnology, Fourth Estate, London (1990).Google Scholar
  35. 35.
    E. Drexler, C. Peterson, and G. Pergami, Unbounding the Future, William Morrow and Company, New York (1991).Google Scholar
  36. 36.
    E. Drexler, Nanosystems: Molecular Machinery, Manufacturing, and Computation, John Wiley and Sons, New York (1992).Google Scholar
  37. 37.
    W. A. Ducker, R. F. Cook, and D. R. Clarke, “Force measurements using an AC Atomic Force Microscope,” J. Appl. Phys., 67, 4045–4052 (1990).Google Scholar
  38. 38.
    J. D. Eshelby, “The continuum theory of lattice defects,” in: F. Seitz and D. Turnbull (eds.), Progress in Solid State Physics, Vol. 3, Acad. Press, New York (1956), pp. 79–303.Google Scholar
  39. 39.
    R. Feynman, There's Plenty of Room at the Bottom, California Institute of Technology, February ( ~feynman/plenty.html) (1960).Google Scholar
  40. 40.
    B. S. Files, “Processing of carbon nanotubes for revolutionary space applications,” AIAA, 5345 (2000).Google Scholar
  41. 41.
    H. L. Frisch, J. M. West, C. G. Goltner, and G. S. Attard, J. Polym. Sci., A, Polym. Chem., 34, 1823–1826 (1996).Google Scholar
  42. 42.
    J. Golovchenko, “The tunneling microscope: A new look at the Atomic World,” Science, 232, 48–56 (1986).Google Scholar
  43. 43.
    A. N. Guz, “On one two-level model in the mesomechanics of compression fracture of cracked composites,” Int. Appl. Mech., 39, No. 3, 274–285 (2003).Google Scholar
  44. 44.
    A. N. Guz (guest editor), S. D. Akbarov, N. A. Shulga, I. Yu. Babich, and V. N. Chekhov, “Micromechanics of composite materials: Focus on Ukrainian research,” Appl. Mech. Review (Special Issue), 45, No. 2, 13–101 (1992).Google Scholar
  45. 45.
    G. Lubin (ed.), Handbook of Composites, Van Nostrand Reinhold Company, New York (1982).Google Scholar
  46. 46.
    H. S. Katz and J. V. Milewski (eds.), Handbook of Fillers and Reinforcements for Plastics, Van Nostrand Reinhold Company, New York (1978).Google Scholar
  47. 47.
    S. Iijima, “Helical microtubes of graphitic carbon,” Nature, 354, 56–58 (1991).Google Scholar
  48. 48.
    S. Iijima and M. Endo (guest editors), “Special issue on carbon nanotubes,” Carbon, 33 (1995).Google Scholar
  49. 49.
    L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Appl. Phys. Letts., 73, No. 9, 1197–1199 (1998).Google Scholar
  50. 50.
    D. R. Katti, K. S. Katti, J. M. Sopp, and M. Sarikaya, “3D finite element modeling of mechanical response in nacre based hybrid nanocomposites,” Comp. Theor. Polym. Sci., 11, No. 5, 397–404 (2001).Google Scholar
  51. 51.
    A. S. Khan, H. Zhang, and L. Takacs, “Mechanical response and modeling of fully compacted nanocrystalline iron and copper,” Int. J. Plasticity, 16, No. 12, 1459–1476 (2000).Google Scholar
  52. 52.
    S. V. Khanna, R. M. Winter, P. Ranganathan, S. B. Yelda, M. Kalukanimuttam, and K. Paruchuri, “Sample preparation techniques for nanomechanical characterization of glass fiber reinforced polyester matrix composites,” Composites, Part A: Applied Science and Manufacturing, 34, No. 1, 53–65 (2003).Google Scholar
  53. 53.
    Yu. V. Kokhanenko, “Numerical study of three-dimensional stability problems for laminated and ribbon-reinforced composites,” Int. Appl. Mech., 37, No. 3, 317–345 (2001).Google Scholar
  54. 54.
    E. Kröner, “—Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen,” Arch. Rat. Mech. Anal., 4, No. 4, 218–334 (1960).Google Scholar
  55. 55.
    H. Kroto, “Symmetry, space, stars, and C60 (Nobel lecture),” Ang. Chem. Int. Ed. Engl., 36 (15), 1578–1593 (1997).Google Scholar
  56. 56.
    K. T. Lau and D. Hui, “Effectiveness of using carbon nanotubes as nanoreinforcements for advanced composite structures,” Carbon, 40, 1605–1606 (2002).Google Scholar
  57. 57.
    K. T. Lau and S. Q. Shi, “Failure mechanisms of carbon nanotube/polymer composites pretreated in different temperature environments,” Carbon, 40, 2961–2973 (2002).Google Scholar
  58. 58.
    K. Lau, H. L. Li, D. S. Lim, and D. Hui, “Recent research and development on nanotube/polymer composites,” Annals Eur. Acad. Sci., 1, No. 1, 318–333 (2003).Google Scholar
  59. 59.
    C. Li and T. W. Chou, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Sol. Str., 40, No. 10, 2487–2499 (2003).Google Scholar
  60. 60.
    F. Li, Cheng, S. Bai, G. Su, and M. S. Dresselhaus, “Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes,” Appl. Phys. Letts., 77, 3161–3163 (2000).Google Scholar
  61. 61.
    K. Liao and S. Li, “Interfacial characteristics of a carbon nanotube-polystyrene composite system,” Appl. Phys. Letts., 79, No. 25, 4225–4227 (2001).Google Scholar
  62. 62.
    D. S. Lim, J. W. An, and H. J. Lee, “Effect of carbon nanotube addition on the tribological behaviour of carbon/carbon composites,” Wear, 252, 512–517 (2002).Google Scholar
  63. 63.
    Y. J. Liu and X. L. Chen, “Evaluation of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element,” Mech. Mater., 35, No. 1–2, 69–81 (2003).Google Scholar
  64. 64.
    V. Lordi and N. Yao, “Molecular mechanics of binding in carbon-nanotube-polymer composites,” J. Mater. Res., 15, 2770–2779 (2000).Google Scholar
  65. 65.
    J. P. Lu, “Elastic properties of single and multilayered nanotubes,” J. Phys. Chem. Solids, 58, 1649–1652 (1997).Google Scholar
  66. 66.
    A. A. Mamedov, N. A. Kotov, M. Prato, D. M. Guldi, J. P. Wicksted, and A. Hirsch, “Molecular design of strong single-wall carbon nanotube/polyelectrolyte multi-layer composites,” Nature, 1, 190–194 (2002).Google Scholar
  67. 67.
    I. V. Mitchell, Pillared Layered Structures: Current Trends and Applications, Elsevier Applied Science, London (1990).Google Scholar
  68. 68.
    H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego (2000).Google Scholar
  69. 69.
    G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. P. Wise, “Equivalent-continuum modeling of nano-structured materials,” Comp. Sci. Techn., 62, No. 14, 1869–1880 (2002).Google Scholar
  70. 70.
    L. S. K. Pang, A. M. Vassallo, and M. A. Wilson, Energy and Fuels, 6, 176–179 (1992).Google Scholar
  71. 71.
    N. Pierard, A. Fonesca, Z. Konua, I. Willems, G. Van Tenderloo, and J. B. Nagy, Chem. Phys. Letts., 335, 1–8 (2001).Google Scholar
  72. 72.
    R. B. Pipes and P. Hubert, “Helical carbon nanotube arrays: mechanical properties,” Comp. Sci. Techn., 62, No. 3, 419–428 (2002).Google Scholar
  73. 73.
    D. Qian, E. C. Dickey, R. Andrews, and T. Rantell, “Load transfer and deformation mechanism in carbon nanotube-polystyrene composites,” Appl. Phys. Letts., 76, No. 20, 2868–2870 (2000).Google Scholar
  74. 74.
    M. Roukes, “Nanoelectromechanical systems face the future,” Physics World, 14, No. 2 (2001).Google Scholar
  75. 75.
    L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, “Load transfer in carbon nanotube epoxy composites,” Appl. Phys. Letts., 73, No. 26, 3826–3844 (1998).Google Scholar
  76. 76.
    M.S. Dresselman, G. Dresselman, and P. C. Eklund (eds.), Science of Fullerenes and Carbon Nanotubes, Acad. Press, London (1996).Google Scholar
  77. 77.
    G. C. Sih and B. Lui, “Mesofracture mechanics: a necessary link,” Theory Appl. Fract. Mech., 37, 371–395 (2001).Google Scholar
  78. 78.
    N. A. Shul'ga, “Propagation of elastic waves in periodically inhomogeneous media,” Int. Appl. Mech., 39, No. 7, 763–796 (2003).Google Scholar
  79. 79.
    R. E. Smalley, “Discovering the fullerenes (Nobel lecture),” Ang. Chem. Int. Ed. Engl., 36 (15), 1594–1601 (1997).Google Scholar
  80. 80.
    Z. K. Tang, L.Y. Zhang, N. Wang, X. X. Zhang, G. H. Wen, C. D. Li, J. N. Wang, C. T. Chan, and P. Sheng, “Supeconductivity in 4 angstrem single-walled carbon nanotubes,” Science, 292(5526), 2462 (2001).Google Scholar
  81. 81.
    E. T. Thostenson, W. Z. Li, D. Z. Wang, Z. F. Ren, and T. W. Chou, “Carbon nanotube/carbon fibre hybrid multiscale composites,” J. Appl. Phys., 91, No. 9, 6034–6037 (2002).Google Scholar
  82. 82.
    E. T. Thostenson and T. W. Chou, “Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization,” J. Phys., D, Appl. Phys., 35, 77–80 (2002).Google Scholar
  83. 83.
    Z. C. Tu and Z. C. Ou-yang, “Single-walled and multi-walled carbon nanotubes viewed as elastic tubes with the effective Young's moduli dependent on layer number,” Phys. Rev., B, 65, 293–307 (2002).Google Scholar
  84. 84.
    H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Appl. Phys. Letts., 72, No. 2, 188–190 (1998).Google Scholar
  85. 85.
    H. D. Wagner, “Nanotube-polymer adhesion: A mechanics approach,” Chem. Phys. Letts., 361, 57–61 (2002).Google Scholar
  86. 86.
    N. Wang, Z. K. Tang, G. D. Li, and J. S. Li, “Single-walled 4 angstrem carbon nanotube arrays,” Nature, 408, 50–51 (2000).Google Scholar
  87. 87.
    A. L. Weisenhorn, P. K. Hansma, T. R. Albrecht, and C. F. Quate, “Forces in atomic force microscopy in air and water,” Appl. Phys. Letts., 54, 2651–2653 (1989).Google Scholar
  88. 88.
    N. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse, Nanotechnology. Basic Science and Emerging Technologies, Chapman and Hall/CRC, Boca Raton–London (2002).Google Scholar
  89. 89.
    E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, 277, 1971–1975 (1997).Google Scholar
  90. 90.
    B. H. Xhang, L. F. Liu, D. S. Tang, W. Y. Zhou, G. Wang, L. X. Qian, S. S. Xie, J. H. Fen, and M. X. Wan, “Conductivity and magnetic susceptibility of nanotube/polypyrolle nanocomposites,” J. Low Temp. Phys., 119, No. 1–2, 41–48 (2000).Google Scholar
  91. 91.
    M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Phys. Rev. Letts., 84 (24), 5552–5555 (2000).Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • A. N. Guz
    • 1
  • Ya. Ya. Rushchitskii
    • 1
  1. 1.National Academy of Sciences of UkraineS. P. Timoshenko Institute of MechanicsKiev

Personalised recommendations