Advertisement

International Journal of Theoretical Physics

, Volume 43, Issue 7–8, pp 1561–1571 | Cite as

States and Structure of von Neumann Algebras

  • Jan Hamhalter
Article
  • 71 Downloads

Abstract

We summarize and deepen recent results on the interplay between properties of states and the structure of von Neumann algebras. We treat Jauch–Piron states and the concept of independence in noncommutative probability theory.

states on von Neumann algebras Jauch–Piron states independence of algebras 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Alfsen, E. M. and Schultz, F. W. (1976). Non-commutative spectral theory for affine functions spaces on convex sets. Memoirs of the American Mathematical Society 172.Google Scholar
  2. Amann, A. (1989). Jauch-Piron states in W-algebraic quantum mechanics. Journal of Mathematical Physics 28(10), 2384-2389.Google Scholar
  3. Baumgärtel, H. and Wollenberg, M. (1992). Casual nets of operator algebras, Mathematical aspects of quantum field theory. Mathematische Monographien 80.Google Scholar
  4. Baumgärtel, H. (1995). Operatoralgebraic Methods in Quantum Field Theory, Akademie Verlag, Berlin.Google Scholar
  5. Bunce, L. J. and Hamhalter, J. (1994). Jauch-Piron states on von Neumann algebras. Mathematische Zeitschrift 215, 491-502.Google Scholar
  6. Bunce, L. J. and Hamhalter, J. (1995). Countably additive homomorphisms between von Neumann algebras. Proceedings of the American Mathematical Society 123(11), 157-160.Google Scholar
  7. Bunce, L. J. and Hamhalter, J. (1996). Extension of Jauch-Piron states on Jordan algebras. Mathematical Proceedings of the Cambridge Philosophical Society 119, 279-286.Google Scholar
  8. Bunce, L. J. and Hamhalter, J. (2000). Jauch-Piron states and ó-additivity. Reviews in Mathematical Physics 12(6), 767-777.Google Scholar
  9. D'Antoni, C. and Longo, R. (1983). Interpolation by type I factors and the flip automorphism. Journal of Functional Analysis 51, 361-371.Google Scholar
  10. Florig, M. and Summers, S. J. (1997). On the statistical independence of algebras of observables. Journal of Mathematical Physics 38(3), 1318-1328.Google Scholar
  11. Goldstein, S., Luczak, A., and Wilde, I. (1999). Independence in operator algebras. Foundations of Physics 29(1), 79-89.Google Scholar
  12. Haag, R. (1996). Local quantum physics. Fields, particles, algebras, 2nd revised edn., Texts and Mono-graphs in Physics, Springer Verlag, Berlin.Google Scholar
  13. Haag, R. and Kastler, D. (1964). An algebraic approach to quantum field theory. Journal of Mathematical Physics 5(7), 842-861.Google Scholar
  14. Hamhalter, J. (1993). Pure Jauch-Piron states on von Neumann algebras. Annals of the Institute of Henri Poincaré 58(2), 173-187.Google Scholar
  15. Hamhalter, J. (1997). Statistical independence of operator algebras. Annals of the Institute of Henri Poincaré, Physique Théorique 67(4), 447-462.Google Scholar
  16. Hamhalter, J. (1998). Determinacy of states and independence of operator algebras. International Journal of Theoretical Physics 37(1), 599-607.Google Scholar
  17. Hamhalter, J. (2001). Pure states on Jordan algebras. Mathematica Bohemica 126(1), 81-91.Google Scholar
  18. Hamhalter, J. (in press). C independence and W-independence of von Neumann algebras. Mathe-matische Nachrichten.Google Scholar
  19. Horudzij, S. S. (1990). Introduction to algebraic quantum field theory. In: Mathematics and Its Appli-cation, Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  20. Jauch, J. (1968). Foundations of Quantum Mechanics, Addison-Wesley, Reading, MA.Google Scholar
  21. Jauch, J. M. and Piron, C. (1965). Can be hidden variables excluded in quantum mechanics. Helvitica Physica Acta 36, 827-837.Google Scholar
  22. Jauch, J. M. and Piron, C. (1969). On the structure of quantum proposition systems. Helvitica Physica Acta 42, 842-848.Google Scholar
  23. Kadison, R. V. and Ringrose, J. R. (1983). Fundamentals of the Theory of Operator Algebras I, II, Academic Press, New York.Google Scholar
  24. Kraus, K. (1964). General quantum field theories and strict locality. Zetschrift für Physik 181,1-12.Google Scholar
  25. Redei, M. (1995a). Logical independence in quantum logic. Foundations of Physics 25, 411-415.Google Scholar
  26. Redei, M. (1995b). Logically independent von Neumann lattices. International Journal of Theoretical Physics 16, 34(8), 1711-1718.Google Scholar
  27. Redei, M. (1998). Quantum logic in algebraic approach. In: Fundamental Theories of Physics, Vol. 91, Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
  28. Roos, H. (1970). Independence of local algebras in quantum field theory. Communications in Mathematical Physics 16, 238-246.Google Scholar
  29. Rütimann, G. (1977). Jauch-Piron states. Journal of Mathematical Physics 18(2), 189-193.Google Scholar
  30. Summers, S. J. (1988). Bell's inequalities and quantum field theory. Quantum Probability and Appli-cations, V, (Heidelberg), Lecture Notes in Mathematics, 1422, 393-413.Google Scholar
  31. Summers, S. J. (1990). On the independence of local algebras in quantum field theory. Reviews in Mathematical Physics 2, 201-247.Google Scholar
  32. Takesaki, M. (1958). On the direct product of W*-factors. Tohoku Mathematics Journal 10, 116-119.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Jan Hamhalter
    • 1
  1. 1.Department of MathematicsFaculty of Electrical Engineering, Czech Technical UniversityCzech Republic

Personalised recommendations