International Journal of Theoretical Physics

, Volume 43, Issue 2, pp 341–347 | Cite as

Entanglement, Hubbard Model, and Symmetries

Article

Abstract

Entangled quantum states are an important component of quantum computing techniques such as quantum error-correction, dense coding, and quantum teleportation. We use the requirements for a state in the Hilbert space C2C2 to be entangled to find when states evolving under the two-point Hubbard model become entangled. We also investigate the connection of entanglement and discrete symmetries of the two-point Hubbard model. Furthermore we discuss the inclusion of phonon coupling.

entanglement Hubbard model phonon coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Hardy, Y. and Steeb, W.-H. (2001). Classical and Quantum Computing with C++ and Java Simulations, Birkhäuser, Basel, Switzerland.Google Scholar
  2. Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK.Google Scholar
  3. Preskill, J. (2001). Quantum Information and Computation, Caltech, Pasadena, CA. http://www.theory.caltech.edu/∼preskill/ph229Google Scholar
  4. Shi, Tan Kiat, Steeb, W.-H., and Hardy, Y. (2000). Symbolic C++: An Introduction to Computer Algebra Using Object-Oriented Programming, Springer-Verlag, London.Google Scholar
  5. Steeb, W.-H. (1997). Matrix Calculus and Kronecker Product With Applications and C++ Programs, World Scientific, Singapore.Google Scholar
  6. Steeb, W.-H. (2003). Problems and Solutions in Theoretical and Mathematical Physics, World Scientific, Vol. II, Advanced Level, Singapore.Google Scholar
  7. Steeb, W.-H. and Hardy, Y. (2000). International Journal of Theoretical Physics 39, 2765.Google Scholar
  8. Steeb, W.-H. and Hardy, Y. (2001). International Journal of Modern Physics C 12, 235-245.Google Scholar
  9. Steeb, W.-H. and Hardy, Y. (2002). Zeitschrift für Naturforschung 57a, 400.Google Scholar
  10. Steeb, W.-H. and Hardy, Y. (2004). Problems and Solutions in Quantum Computing and Quantum Information, World Scientific, Singapore.Google Scholar
  11. Steeb, W.-H., Louw, J. A., Villet, C. M., and Kunick, A. (1986). Physica Scripta 34, 245.Google Scholar
  12. Wooters, W. K. (1998). Physical Review Letters 80, 2245.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.International School for Scientific ComputingRand Afrikaans UniversityAuckland Park

Personalised recommendations