International Journal of Theoretical Physics

, Volume 43, Issue 1, pp 265–298

Interpreting Observables in a Quantum World from the Categorial Standpoint

  • Elias Zafiris


We develop a relativistic perspective on structures of quantum observables, in terms of localization systems of Boolean coordinatizing charts. This perspective implies that the quantum world is comprehended via Boolean reference frames for measurement of observables, pasted together along their overlaps. The scheme is formalized categorically, as an instance of the adjunction concept. The latter is used as a framework for the specification of a categorical equivalence signifying an invariance in the translational code of communication between Boolean localizing contexts and quantum systems. Aspects of the scheme semantics are discussed in relation to logic. The interpretation of coordinatizing localization systems, as structure sheaves, provides the basis for the development of an algebraic differential geometric machinery suited to the quantum regime.

Boolean quantum observables localization adjunction topos sheaves quantum logic abstract differential geometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artin, M., Grothendieck, A., and Verdier, J. L. (1972). Theorie de topos et cohomologie etale des schemas (Springer LNM 269 and 270), Springer-Verlag, Berlin.Google Scholar
  2. Bell, J. L. (1985). Boolean-Valued Models and Independence Proofs in Set Theory, Oxford University Press, Oxford.Google Scholar
  3. Bell, J. L. (1988). Toposes and Local Set Theories, Oxford University Press, Oxford.Google Scholar
  4. Birkhoff, G. and von Neumann, J. (1936). The logic of quantum mechanics. Annals of Mathematics 37, 823.Google Scholar
  5. Butterfield, J. and Isham, C. J. (1998). A topos perspective on the Kochen–Specker theorem: I. Quantum states as generalized valuations. International Journal of Theoretical Physics 37, 2669.Google Scholar
  6. Butterfield, J. and Isham, C. J. (1999). A topos perspective on the Kochen–Specker theorem: II. Conceptual aspects and classical analogues. International Journal of Theoretical Physics 38, 827.Google Scholar
  7. Butterfield, J. and Isham, C. J. (2000). Some possible roles for topos theory in quantum theory and quantum gravity. Foundations of Physics 30, 1707.Google Scholar
  8. Davis, M. (1977). A relativity principle in quantum mechanics. International Journal of Theoretical Physics 16, 867.Google Scholar
  9. Kochen, S. and Specker E. (1967). The problem of hidden variables in quantum mechanics. Journal of Mathematics and Mechanics 17, 59.Google Scholar
  10. Lawvere, F. W. (1975). Continuously variables sets: Algebraic geometry = Geometric logic. Proceedings of the Logic Colloquium in Bristol, North-Holland, Amsterdam.Google Scholar
  11. Lawvere, F. W. and Schanuel, S. H. (1997). Conceptual Mathematics, Cambridge University Press, Cambridge.Google Scholar
  12. MacLane, S. (1971). Categories for the Working Mathematician, Springer-Verlag, New York.Google Scholar
  13. MacLane, S. and Moerdijk, I. (1992). Sheaves in Geometry and Logic, Springer-Verlag, New York.Google Scholar
  14. Mallios, A. (1998). Geometry of Vector Sheaves: An Axiomatic Approach to Differential Geometry, Vols. 1–2, Kluwer Academic Publishers, Dordrecht.Google Scholar
  15. Mallios, A. (2002). Remarks on singularities (gr-qc/0202028).Google Scholar
  16. Raptis, I. (2001). Presheaves, sheaves, and their topoi in quantum gravity and quantum logic (gr-qc/0110064).Google Scholar
  17. Rawling, J. P. and Selesnick, S. A. (2000). Orthologic and quantum logic. Models and computational elements. Journal of the Association for Computing Machinery 47, 721.Google Scholar
  18. Takeuti, G. (1978). Two applications of logic to mathematics. Mathematical Society of Japan 13, Kano Memorial Lectures 3.Google Scholar
  19. Varadarajan, V. S. (1968). Geometry of Quantum Mechanics, Vol. 1, Van Nostrand, Princeton, NJ.Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Elias Zafiris
    • 1
  1. 1.Faculty of Mathematics and InformaticsUniversity of SofiaSofiaBulgaria

Personalised recommendations