International Journal of Theoretical Physics

, Volume 42, Issue 12, pp 2847–2853 | Cite as

Fully Entangled Quantum States in \(C^{N^2 }\) and Bell Measurement

  • Yorick Hardy
  • Willi-Hans Steeb
  • Ruedi Stoop


Entangled quantum states are an important component of quantum computing techniques such as quantum error-correction, dense coding, and quantum teleportation. We describe how to generate fully entangled states in the Hilbert space CNCN starting from a unitary matrix and show that they form an orthonormal basis in this space.

entanglement Bell measurement phase operator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Hardy, Y. and Steeb, W.-H. (2001) Classical and Quantum Computing With C++ and Java Simulations, Birkhäuser, Basel, Switzerland.Google Scholar
  2. Nielsen, M. A. and Chuang, I. L. (2000) Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, United Kingdom.Google Scholar
  3. Pegg, D. T. and Barnett, S. M. (1997). Journal of Modern Optics 44, 225.Google Scholar
  4. Preskill, J. (2000) The Theory of Quantum Information and Quantum Computation,∼preskill/ph229Google Scholar
  5. Schrödinger, E. (1936). Proceedings of the Cambridge Philosophical Society 32, 446.Google Scholar
  6. Schwinger, J. S. (2000) Quantum Kinematics and Dynamics, Perseus Books Group, Boulder, CO.Google Scholar
  7. Steeb, W.-H. (1997). Matrix Calculus and Kronecker Product With Applications and C++ Programs, World Scientific, Singapore.Google Scholar
  8. Steeb, W.-H. (1998) Hilbert Spaces, Wavelets, Generalized Functions and Modern Quantum Mechanics, Kluwer, Norwell, MA.Google Scholar
  9. Steeb, W.-H. and Hardy, Y. (2000). International Journal of Theoretical Physics 39, 2765.Google Scholar
  10. Steeb, W.-H. and Hardy, Y. (2002). Zeitschrift für Naturforschung 57a, 400.Google Scholar
  11. Trifonov, A. et al. (2000). Journal of Optics B: Quantum and Semiclassical Optics 2, 105.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Yorick Hardy
    • 1
  • Willi-Hans Steeb
    • 1
  • Ruedi Stoop
    • 2
  1. 1.International School for Scientific ComputingRand Afrikaans University, Auckland ParkSouth Africa
  2. 2.ETHZInstitut für NeuroinformatikZürichSwitzerland

Personalised recommendations