Advertisement

International Journal of Thermophysics

, Volume 25, Issue 4, pp 1235–1252 | Cite as

Bidirectional Reflection Measurements of Periodically Microstructured Silicon Surfaces

  • Y. B. Chen
  • Q. Z. Zhu
  • T. L. Wright
  • W. P. King
  • Z. M. Zhang
Article

Abstract

Surface modifications have a great potential for selective emission and absorption for applications in photonics, energy conversion, and biosensing. Pattern-induced radiative property changes can be an important issue in the manufacturing and diagnostics of microelectronic devices. This work investigates the polarized diffraction of micromachined silicon wafers. Both one-dimensional (1-D) and two-dimensional (2-D) periodic microstructures are manufactured by plasma-assisted anisotropic etching. The rotating mask method is used to produce 2.25 × 106 2-D structures in a single sample (7.5 × 7.5 mm2). Surface topography is characterized by using a scanning electron microscope (SEM). A bidirectional scatterometer with high accuracy and angular resolution measures the diffraction patterns from the microstructured silicon surfaces at a wavelength of 635 nm. The diffraction patterns follow the grating equation, which are caused by microstructures and their orientations. Predicted diffraction angles are in excellent agreement with the experimental results.

bidirectional reflection diffraction grating scattering silicon microstructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    A. K. Sharma, S. H. Zaidi, P. C. Logofatu, and S. R. J. Brueck, IEEE J. Quantum Elec-tron. 38:1651 (2002).Google Scholar
  2. 2.
    G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, Appl. Phys. Lett.64:960 (1994).Google Scholar
  3. 3.
    A. Boueke, R. Kuhn, P. Fath, G. Willeke, and E. Bucher, Solar Energy Mater. Solar Cells 65:549 (2001).Google Scholar
  4. 4.
    T. J. Coutts, Renewable and Sustainable Energy Rev. 3:77 (1999).Google Scholar
  5. 5.
    A. Heinzel, V. Boerner, A. Gombert, B. Bl ¨asi, V. Wittwer, and J. Luther, J. Mod. Opt. 47:2399 (2000).Google Scholar
  6. 6.
    Y. Kanamori, K. Hane, H. Sai, and H. Yugami, Appl. Phys. Lett. 78:142 (2001).Google Scholar
  7. 7.
    J. P. Hebb, K. F. Jensen, and J. Thomas, IEEE Trans. Semocond. Manuf.11:607 (1998).Google Scholar
  8. 8.
    Z. M. Zhang, Annu. Rev. Heat Transfer 11:351 (2000).Google Scholar
  9. 9.
    S. S. H. Naqvi, R. H. Krukar, J. R. McNeil, J. E. Franke, T. M. Niemczyk, D. M. Haaland, R. A. Gottscho, and A. Kornblit, J. Opt. Soc. Am. A 11:2485 (1994).Google Scholar
  10. 10.
    J. Homola, I. Koudela, and S. S. Yee, Sens. Actuators B 54:16 (1999).Google Scholar
  11. 11.
    D. K. Kambhampati, T. A. M. Jakob, J. W. Robertson, M. Cai, J. E. Pemberton, and W. Knoll, Langmuir 17:1169 (2001).Google Scholar
  12. 12.
    R. B. Zipin, Appl. Opt. 5:1954 (1966).Google Scholar
  13. 13.
    Z. M. Zhang, C. J. Fu, and Q. Z. Zhu, Adv. Heat Transfer 37:179 (2003).Google Scholar
  14. 14.
    P. J. Hesketh, J. N. Zemel, and B. Gebhart, Nature 324: 549 (1986).Google Scholar
  15. 15.
    P. J. Hesketh, B. Gebhart, and J. N. Zemel, J. Heat Transfer 110:680 (1988).Google Scholar
  16. 16.
    T. K. Wang and J. N. Zemel, Appl. Opt. 32:2021 (1993).Google Scholar
  17. 17.
    J.-J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, Nature 416:61 (2002).Google Scholar
  18. 18.
    R. Carminati and J.-J. Greffet, Phys. Rev. Lett. 82:1660 (1999).Google Scholar
  19. 19.
    H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, J. Opt. Soc. Am. A 18:1471 (2001).Google Scholar
  20. 20.
    S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, Appl. Phys. Lett. 79:1393 (2001).Google Scholar
  21. 21.
    D. W. Cohn, K. Tang, and R. O. Buckius, Int. J. Heat Mass Transfer 40:3223 (1997).Google Scholar
  22. 22.
    K. Tang and R. O. Buckius, Microscale Thermophys. Eng. 2:245 (1998).Google Scholar
  23. 23.
    Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, Rev. Sci. Instrum. 74:4885 (2003).Google Scholar
  24. 24.
    M. J. Madou, in Fundamentals of Microfabrication (CRC Press, Boca Raton, Florida, 2002), Chap. 2.Google Scholar
  25. 25.
    P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House, Norwood, Massachusetts, 1987), Chap. 4.Google Scholar
  26. 26.
    J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Y. B. Chen
    • 1
  • Q. Z. Zhu
    • 1
  • T. L. Wright
    • 1
  • W. P. King
    • 1
  • Z. M. Zhang
    • 1
  1. 1.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaU.S.A

Personalised recommendations