International Journal of Thermophysics

, Volume 25, Issue 1, pp 21–69 | Cite as

Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air

Article

Abstract

New formulations for the viscosity and thermal conductivity for nitrogen, oxygen, argon, and air are given. Air is treated as a pseudo-pure fluid using an approach adopted from previous research on the equation of state for air. The equations are valid over all liquid and vapor states, and a simplified cross-over equation was used to model the behavior of the critical enhancement for thermal conductivity. The extrapolation behavior of the equations for nitrogen and argon well below their triple points was monitored so that both could be used as reference equations for extended corresponding states applications. The uncertainties of calculated values from the equations are generally within 2% for nitrogen and argon and within 5% for oxygen and air, except in the critical region where the uncertainties are higher. Comparisons with the available experimental data are given.

air argon nitrogen oxygen thermal conductivity viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    J. B. Howley, J. W. Magee, and W. M. Haynes, Int. J. Thermophys. 15:801(1994).Google Scholar
  2. 2.
    J. W. Magee, Int. J. Thermophys. 15:849(1994).Google Scholar
  3. 3.
    B. A. Younglove and N. V. Frederick, Int. J. Thermophys. 13:1033(1992).Google Scholar
  4. 4.
    D. E. Diller, A. S. Aragon, and A. Laesecke, Cryogenics 31:1070(1991).Google Scholar
  5. 5.
    R. A. Perkins, H. M. Roder, and C. A. Nieto de Castro, J. Res. NIST 96:247(1991).Google Scholar
  6. 6.
    R. A. Perkins, H. M. Roder, D. G. Friend, and C. A. Nieto de Castro, Physica A 173:332(1991).Google Scholar
  7. 7.
    H. M. Roder, R. A. Perkins, and C. A. Nieto de Castro, NISTIR 3902(1988).Google Scholar
  8. 8.
    R. A. Perkins, D. G. Friend, H. M. Roder, and C. A. Nieto de Castro, Int. J. Thermophys. 12:965(1991).Google Scholar
  9. 9.
    H. M. Roder, R. A. Perkins, and A. Laesecke, J. Res. NIST 105:221(2000).Google Scholar
  10. 10.
    R. A. Perkins and M. T. Cieszkiewicz, NISTIR 3961(1991).Google Scholar
  11. 11.
    R. T Jacobsen, W. P. Clarke, S. G. Penoncello, and R. D. McCarty, Int. J. Thermophys. 11:169(1990).Google Scholar
  12. 12.
    R. T Jacobsen, S. G. Penoncello, S. W. Beyerlein, W. P. Clarke, and E. W. Lemmon, Fluid Phase Equilib. 79:113(1992).Google Scholar
  13. 13.
    M. D. Panasiti, E. W. Lemmon, S. G. Penoncello, R. T Jacobsen, and D. G. Friend, Int. J. Thermophys. 20:217(1999).Google Scholar
  14. 14.
    E. W. Lemmon, R. T Jacobsen, S. G. Penoncello, and D. G. Friend, J. Phys. Chem. Ref. Data 29:331(2000).Google Scholar
  15. 15.
    E. W. Lemmon and S. G. Penoncello, Adv. Cryo. Eng. 39:1927(1994).Google Scholar
  16. 16.
    E. W. Lemmon, M. O. McLinden, and M. L. Huber, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 7.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland, 2002.Google Scholar
  17. 17.
    G. A. Olchowy and J. V. Sengers, Int. J. Thermophys. 10:417(1989).Google Scholar
  18. 18.
    E. W. Lemmon and R. T Jacobsen, J. Phys. Chem. Ref. Data 29:521(2000).Google Scholar
  19. 19.
    K. Stephan and R. Krauss, J. Phys. Chem. Ref. Data 16:993(1987).Google Scholar
  20. 20.
    A. Laesecke, R. Krauss, K. Stephan, and W. Wagner, J. Phys. Chem. Ref. Data 19:1089(1990).Google Scholar
  21. 21.
    B. A. Younglove and H. J. M. Hanley, J. Phys. Chem. Ref. Data 15:1323(1986).Google Scholar
  22. 22.
    B. A. Younglove, J. Phys. Chem. Ref. Data, Suppl. 11:1(1982).Google Scholar
  23. 23.
    K. Stephan and A. Laesecke, J. Phys. Chem. Ref. Data 14:227(1985).Google Scholar
  24. 24.
    R. Span, E. W. Lemmon, R. T Jacobsen, W. Wagner, and A. Yokozeki, J. Phys. Chem. Ref. Data 29:1361(2000).Google Scholar
  25. 25.
    C. Tegeler, R. Span, and W. Wagner, J. Phys. Chem. Ref. Data 28:779(1999).Google Scholar
  26. 26.
    R. Schmidt and W. Wagner, Fluid Phase Equilib. 19:175(1985).Google Scholar
  27. 27.
    H. Abachi, J. Molenat, and P. Malbrunot, Phys. Lett. A 80:171(1980).Google Scholar
  28. 28.
    K. I. Amirkhanov and A. P. Adamov, Teploenergetika 10:77(1963).Google Scholar
  29. 29.
    K. I. Amirkhanov, A. P. Adamov, and G. D. Gasanov, Inz.-Fiz. Zh. 22:835(1972).Google Scholar
  30. 30.
    K. I. Amirkhanov, A. P. Adamov, and G. D. Gasanov, Therm. Eng. 17:84(1970).Google Scholar
  31. 31.
    M. J. Assael and W. A. Wakeham, J. Chem. Soc., Faraday Trans. 1 77:697(1981).Google Scholar
  32. 32.
    M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc., Faraday Trans. 1 77:439(1981).Google Scholar
  33. 33.
    R. A. Aziz, J. Chem. Phys. 99:4518(1993).Google Scholar
  34. 34.
    B. Y. Baharudin, D. A. Jackson, and P. E. Schoen, Phys. Lett. A 51:409(1975).Google Scholar
  35. 35.
    B. J. Bailey and K. Kellner, Physica 39:444(1968).Google Scholar
  36. 36.
    J. D. Baron, J. G. Roof, and F. W. Wells, J. Chem. Eng. Data 4:283(1959).Google Scholar
  37. 37.
    J. A. Bearden, Phys. Rev. 56:1023(1939).Google Scholar
  38. 38.
    C. F. Bonilla, R. D. Brooks, and P. L. Walker, in Proc. General Discussion on Heat Transfer II (Institution of Mechanical Engineers, London, 1951), p. 167.Google Scholar
  39. 39.
    J. P. Boon and G. Thomaes, Physica 29:208(1963).Google Scholar
  40. 40.
    J. P. Boon, J. C. Legros, and G. Thomaes, Physica 33:547(1967).Google Scholar
  41. 41.
    E. Borovik, Zh. Ek. Theor. Fiz. 17:328(1947).Google Scholar
  42. 42.
    E. Borovik, A. Matveev, and E. Panina, Zh. Tekh. Fiz. 10:988(1940).Google Scholar
  43. 43.
    J. H. Boyd, Phys. Rev. 35:1284(1930).Google Scholar
  44. 44.
    T. J. S. Brain, Int. J. Heat Mass Transfer 10:737(1967).Google Scholar
  45. 45.
    H. Braune, R. Basch, and W. Wentzel, Z. Phys. Chem. A 137:176(1928).Google Scholar
  46. 46.
    J. C. G. Calado, U. V. Mardolcar, C. A. Nieto de Castro, H. M. Roder, and W. A. Wakeham, Physica A 143:314(1987).Google Scholar
  47. 47.
    L. T. Carmichael and B. H. Sage, AIChE J. 12:559(1966).Google Scholar
  48. 48.
    D. L. Carroll, H. Y. Lo, and L. I. Stiel, J. Chem. Eng. Data 13:53(1968).Google Scholar
  49. 49.
    S. H. P. Chen and S. C. Saxena, High Temp. Sci. 5:206(1973).Google Scholar
  50. 50.
    S. H. P. Chen and S. C. Saxena, Mol. Phys. 29:455(1975).Google Scholar
  51. 51.
    G. L. Chierici and A. Paratella, AIChE J. 15:786(1969).Google Scholar
  52. 52.
    A. G. Clarke and E. B. Smith, J. Chem. Phys. 48:3988(1968).Google Scholar
  53. 53.
    A. G. Clarke and E. B. Smith, J. Chem. Phys. 51:4156(1969).Google Scholar
  54. 54.
    A. A. Clifford, J. Kestin, and W. A. Wakeham, Physica A 97:287(1979).Google Scholar
  55. 55.
    A. A. Clifford, P. Gray, A. I. Johns, A. C. Scott, and J. T. R. Watson, J. Chem. Soc., Faraday Trans. 1 77:2679(1981).Google Scholar
  56. 56.
    A. A. Clifford, P. Gray, and A. C. Scott, J. Chem. Soc., Faraday Trans. 1 71:875(1975).Google Scholar
  57. 57.
    P. Correia, B. Schramm, and K. Schaefer, Ber. Bunsenges. Phys. Chem. 72:393(1968).Google Scholar
  58. 58.
    R. A. Dawe and E. B. Smith, J. Chem. Phys. 52:693(1970).Google Scholar
  59. 59.
    A. de Bock, W. Grevendonk, and H. Awouters, Physica 34:49(1967).Google Scholar
  60. 60.
    A. de Bock, W. Grevendonk, and W. Herreman, Physica 37:227(1967).Google Scholar
  61. 61.
    C. A. N. de Castro and H. M. Roder, J. Res. Natl. Bur. Stand. 86:293(1981).Google Scholar
  62. 62.
    J. J. de Groot, J. Kestin, H. Sookiazian, and W. A. Wakeham, Physica A (Amsterdam) 92:117(1978).Google Scholar
  63. 63.
    A. G. De Rocco and J. O. Halford, J. Chem. Phys. 28:1152(1958).Google Scholar
  64. 64.
    B. G. Dickins, Proc. Roy. Soc. Ser. A 143:517(1934).Google Scholar
  65. 65.
    D. E. Diller, Physica A 119:92(1983).Google Scholar
  66. 66.
    R. DiPippo and J. Kestin, Proc. Symp. Thermophys. Prop. 4:304(1968).Google Scholar
  67. 67.
    R. DiPippo, J. Kestin, and J. H. Whitelaw, Physica 32:2064(1966).Google Scholar
  68. 68.
    R. DiPippo, J. Kestin, and K. Oguchi, J. Chem. Phys. 46:4758(1968).Google Scholar
  69. 69.
    Y. Y. Duan, L. Q. Sun, L. Shi, M. S. Zhu, and L. Z. Han, J. Chem. Eng. Data 42:890(1997).Google Scholar
  70. 70.
    C. P. Ellis and C. J. G. Raw, J. Chem. Phys. 30:574(1959).Google Scholar
  71. 71.
    C. Evers, H. W. Loesch, and W. Wagner, Int. J. Thermophys. 23:1411(2002).Google Scholar
  72. 72.
    F. M. Faubert and G. S. Springer, J. Chem. Phys. 57:2333(1972).Google Scholar
  73. 73.
    G. P. Filippova and I. P. Ishkin, Kislorod 2:38(1959).Google Scholar
  74. 74.
    G. P. Filippova and I. P. Ishkin, in The Viscosity of Air, Nitrogen, and Argon at Low Temperatures and Pressures to 150 Atm, Foreign Technol. Div., Transl. FTD-TT-62-113, 8 pp. (1962).Google Scholar
  75. 75.
    R. Fleeter, J. Kestin, and W. A. Wakeham, Physica A 103:521(1980).Google Scholar
  76. 76.
    G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154(1963).Google Scholar
  77. 77.
    S. Forster, Cryogenics 3:176(1963).Google Scholar
  78. 78.
    E. U. Franck, Z. Elektrochem. 55:636(1951).Google Scholar
  79. 79.
    R. S. Gambhir, J. M. Gandhi, and S. C. Saxena, Indian J. Pure Appl. Phys. 5:457(1967).Google Scholar
  80. 80.
    H. Geier and K. Schafer, Allg. Warmetech. 10:70(1961).Google Scholar
  81. 81.
    S. F. Gerf and G. I. Galkov, Zh. Tekh. Fiz. 10:725(1940).Google Scholar
  82. 82.
    I. Glassman and C. F. Bonilla, Chem. Eng. Prog. 49:153(1953).Google Scholar
  83. 83.
    K. Goldman, Physica 29:499(1963).Google Scholar
  84. 84.
    J. Golubev and I. Kurin, Teploenergetika 8:83(1974).Google Scholar
  85. 85.
    I. F. Golubev and M. V. Kalzsina, Gazov. Promst. 9:41(1964).Google Scholar
  86. 86.
    I. F. Golubev, Teploenergetika 10:78(1963).Google Scholar
  87. 87.
    I. F. Golubev, Zh. Tekh. Fiz. 8:1932(1938).Google Scholar
  88. 88.
    I. F. Golubev, N. E. Gnezdilov, and G. V. Brodskaya, in Viscosity of Air and Carbon Dioxide at Different Temperatures and Pressures, Khimia i Tekhnologia Produktov Organich. Sinteza. Fiziko-Khimich. Issledovania Part 8, Moscow, GIAP (1971), pp. 48-53.Google Scholar
  89. 89.
    I. F. Golubev, in Viscosity of Gases and Gas Mixtures. A Handbook (Israel Program Sci. Transl., 1970), 245 pp.Google Scholar
  90. 90.
    G. E. Goring and D. P. Eagan, Can. J. Chem. Eng. 49:25(1971).Google Scholar
  91. 91.
    D. W. Gough, G. P. Matthews, and E. B. Smith, J. Chem. Soc., Faraday Trans. 1 72:645(1976).Google Scholar
  92. 92.
    J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856(1969).Google Scholar
  93. 93.
    P. Gray and P. G. Wright, Proc. Roy. Soc. London Ser. A 263:161(1961).Google Scholar
  94. 94.
    H. Gregory and S. Marshall, Proc. Roy. Soc. Ser. A 118:594(1928).Google Scholar
  95. 95.
    W. Grevendonk, W. Herreman, and A. de Bock, Physica 46:600(1970).Google Scholar
  96. 96.
    W. Grevendonk, W. Herreman, W. de Pesseroey, and A. de Bock, Physica 40:207(1968).Google Scholar
  97. 97.
    F. A. Guevara, B. B. McInteer, and W. E. Wageman, Phys. Fluids 12:2493(1969).Google Scholar
  98. 98.
    J. W. Haarman, Transport Phenomena, AIP Conf. Proc. 11:193(1973).Google Scholar
  99. 99.
    G. Hammann, Ann. Phys., Series 5 32:593(1938).Google Scholar
  100. 100.
    U. Hammerschmidt, Int. J. Thermophys. 16:1203(1995).Google Scholar
  101. 101.
    K. C. Hansen, L.-H. Tsao, and T. M. Aminabhavi, J. Chem. Eng. Data 40:18(1995).Google Scholar
  102. 102.
    E. N. Haran, G. C. Maitland, M. Mustafa, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 87:657(1983).Google Scholar
  103. 103.
    W. M. Haynes, Physica (Amsterdam) 67:440(1973).Google Scholar
  104. 104.
    W. M. Haynes, Physica A (Amsterdam) 89:569(1977).Google Scholar
  105. 105.
    J. Hellemans, H. Zink, and O. van Paemel, Physica 46:395(1970).Google Scholar
  106. 106.
    J. Hellemans, H. Zink, and O. van Paemel, Physica 47:45(1970).Google Scholar
  107. 107.
    J. M. Hellemans, J. Kestin, and S. T. Ro, Physica 65:362(1973).Google Scholar
  108. 108.
    J. M. Hellemans, J. Kestin, and S. T. Ro, Physica 71:1(1974).Google Scholar
  109. 109.
    A. Hobley, G. P. Matthews, and A. Townsend, Int. J. Thermophys. 10:1165(1989).Google Scholar
  110. 110.
    J. H. B. Hoogland, H. R. van den Berg, and N. J. Trappeniers, Physica A 134:169(1985).Google Scholar
  111. 111.
    J. J. Hurly, Private communication (National Institute of Standards and Technology, Gaithersburg, Maryland, 2002).Google Scholar
  112. 112.
    L. D. Ikenberry and S. A. Rice, J. Chem. Phys. 39:1561(1963).Google Scholar
  113. 113.
    N. Imaishi, J. Kestin, and W. A. Wakeham, Physica A 123:50(1984).Google Scholar
  114. 114.
    J. B. Irving, D. T. Jamieson, and D. S. Paget, Trans. Inst. Chem. Eng. 51:10(1973).Google Scholar
  115. 115.
    Z. A. Ivanova, N. V. Tsederberg, and V. N. Popov, Teploenergetika 14:74(1967).Google Scholar
  116. 116.
    H. Iwasaki and J. Kestin, Physica 29:1345(1963).Google Scholar
  117. 117.
    H. Iwasaki, Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6:296(1954).Google Scholar
  118. 118.
    H. Iwasaki, Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 3:247(1951).Google Scholar
  119. 119.
    H. Iwasaki, J. Kestin, and A. Nagashima, J. Chem. Phys. 40:2988(1964).Google Scholar
  120. 120.
    P. C. Jain and S. C. Saxena, Mol. Phys. 33:133(1977).Google Scholar
  121. 121.
    P. Johannin and B. Vodar, Ind. Eng. Chem. 49:2040(1957).Google Scholar
  122. 122.
    P. Johannin, J. Rech. C. N. R. S. 43:116(1958).Google Scholar
  123. 123.
    A. I. Johns, S. Rashid, L. Rowan, J. T. R. Watson, and A. A. Clifford, Int. J. Thermophys. 9:3(1988).Google Scholar
  124. 124.
    A. I. Johns, S. Rashid, T. R. Watson, and A. A. Clifford, J. Chem. Soc., Faraday Trans. 1 82:2235(1986).Google Scholar
  125. 125.
    H. L. Johnston and E. R. Grilly, J. Chem. Phys. 14:233(1946).Google Scholar
  126. 126.
    H. L. Johnston and E. R. Grilly, J. Phys. Chem. 46:948(1942).Google Scholar
  127. 127.
    H. L. Johnston and K. E. McCloskey, J. Phys. Chem. 44:1038(1940).Google Scholar
  128. 128.
    H. L. Johnston, R. W. Mattox, and R. W. Powers, NACA TN 2546:1(1951).Google Scholar
  129. 129.
    A. S. Kalelkar and J. Kestin, J. Chem. Phys. 52:4248(1970).Google Scholar
  130. 130.
    W. G. Kannuluik and E. H. Carman, Aust. J. Sci. Res. A 4:305(1951).Google Scholar
  131. 131.
    W. G. Kannuluik and L. H. Martin, Proc. Roy. Soc. Ser. A 144:496(1934).Google Scholar
  132. 132.
    J. T. F. Kao and R. Kobayashi, J. Chem. Phys. 47:2836(1967).Google Scholar
  133. 133.
    G. Kellstroem, Ark. Mat., Astron. Fys. A 27:1(1941).Google Scholar
  134. 134.
    J. Kestin and A. Nagashima, J. Chem. Phys. 40:3648(1964).Google Scholar
  135. 135.
    J. Kestin and H. E. Wang, Trans. ASME 80:11(1958).Google Scholar
  136. 136.
    J. Kestin and J. Yata, J. Chem. Phys. 49:4780(1968).Google Scholar
  137. 137.
    J. Kestin and J. H. Whitelaw, Int. J. Heat Mass Transfer 7:1245(1964).Google Scholar
  138. 138.
    J. Kestin and J. H. Whitelaw, Physica 29:335(1963).Google Scholar
  139. 139.
    J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 80:619(1976).Google Scholar
  140. 140.
    J. Kestin and S. T. Ro, Ber. Bunsenges. Phys. Chem. 86:948(1982).Google Scholar
  141. 141.
    J. Kestin and W. Leidenfrost, Physica 25:1033(1959).Google Scholar
  142. 142.
    J. Kestin and W. Leidenfrost, Thermodyn. Transp. Prop. Gases, Liq., Solids, Symposium on Thermal Properties 321(1959).Google Scholar
  143. 143.
    J. Kestin and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 83:573(1979).Google Scholar
  144. 144.
    J. Kestin, E. Paykoc, and J. V. Sengers, Physica 54:1(1971).Google Scholar
  145. 145.
    J. Kestin, H. E. Khalifa, and W. A. Wakeham, Physica A 90:215(1978).Google Scholar
  146. 146.
    J. Kestin, H. E. Khalifa, S. T. Ro, and W. A. Wakeham, Physica A 88:242(1977).Google Scholar
  147. 147.
    J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica A 100:349(1980).Google Scholar
  148. 148.
    J. Kestin, S. T. Ro, and W. A. Wakeham, Ber. Bunsenges. Phys. Chem. 86:753(1982).Google Scholar
  149. 149.
    J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:4036(1972).Google Scholar
  150. 150.
    J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:4086(1972).Google Scholar
  151. 151.
    J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:4119(1972).Google Scholar
  152. 152.
    J. Kestin, S. T. Ro, and W. A. Wakeham, J. Chem. Phys. 56:5837(1972).Google Scholar
  153. 153.
    J. Kestin, W. Wakeham, and K. Watanabe, J. Chem. Phys. 53:3773(1970).Google Scholar
  154. 154.
    F. G. Keyes and D. J. Sandell, Trans. ASME 72:767(1950).Google Scholar
  155. 155.
    F. G. Keyes and R. G. Vines, J. Heat Transfer, Trans. ASME C 87:177(1965).Google Scholar
  156. 156.
    F. G. Keyes, Trans. ASME 76:809(1954).Google Scholar
  157. 157.
    F. G. Keyes, Trans. ASME 77:1395(1955).Google Scholar
  158. 158.
    F. G. Keyes, Trans. ASME 73:597(1951).Google Scholar
  159. 159.
    R. Kiyama and T. Makita, Rev. Phys. Chem. Japan 22:49(1952).Google Scholar
  160. 160.
    R. Kiyama and T. Makita, Rev. Phys. Chem. Japan 26:70(1956).Google Scholar
  161. 161.
    H. Kobayashi and K. Kurase, Keiryo Kenkyusho Hokoku 26:83(1977).Google Scholar
  162. 162.
    V. Y. Kompaneets, Sb. Nauchn. Rab., Leningr. Inst. Mekh. Sel. Khoz. 9:113(1953).Google Scholar
  163. 163.
    I. Kurin and I. Golubev, Teploenergetika 21:84(1974).Google Scholar
  164. 164.
    B. Latto and M. W. Saunders, J. Mech. Eng. Sci. 15:266(1973).Google Scholar
  165. 165.
    A. V. Lavushchev and V. E. Lyusternik, High Temp. 16:172(1978).Google Scholar
  166. 166.
    A. V. Lavushchev and V. E. Lyusternik, Russ. J. Phys. Chem. 50:1795(1976).Google Scholar
  167. 167.
    F. Lazarre and B. Vodar, Proc. Joint Conf. Thermodyn. Trans. Prop. Fluids, London 159(1957).Google Scholar
  168. 168.
    B. Le Neindre, Int. J. Heat Mass Transfer 15:1(1972).Google Scholar
  169. 169.
    B. Le Neindre, P. Bury, R. Tufeu, P. Johannin, and B. Vodar, Therm. Conduct. 7:579(1968).Google Scholar
  170. 170.
    B. Le Neindre, R. Tufeu, P. Bury, P. Johannin, and B. Vodar, Therm. Conduct. 8:75(1969).Google Scholar
  171. 171.
    B. Le Neindre, Y. Garrabos, and R. Tufeu, Physica A 156:512(1989).Google Scholar
  172. 172.
    J. M. Lenoir and E. W. Comings, Chem. Eng. Prog. 47:223(1951).Google Scholar
  173. 173.
    J. M. Lenoir, W. A. Junk, and E. W. Comings, Chem. Eng. Prog. 49:539(1953).Google Scholar
  174. 174.
    T. D. Ling and M. Van Winkle, Ind. Eng. Chem. 3:82(1958).Google Scholar
  175. 175.
    B. A. Lowry, S. A. Rice, and P. Gray, J. Chem. Phys. 40:3673(1964).Google Scholar
  176. 176.
    V. I. Lukin, B. A. Ivakin, and P. E. Suetin, Sov. Phys. Tech. Phys. 28:597(1983).Google Scholar
  177. 177.
    G. C. Maitland and E. B. Smith, J. Chem. Eng. Data 17:150(1972).Google Scholar
  178. 178.
    G. C. Maitland and E. B. Smith, J. Chem. Soc., Faraday Trans. 1 70:1191(1974).Google Scholar
  179. 179.
    G. C. Maitland, M. Mustafa, and W. A. Wakeham, J. Chem. Soc., Faraday Trans. 1 79:163(1983).Google Scholar
  180. 180.
    R. A. Makavetskas, V. N. Popov, and N. V. Tsederberg, High Temp. 1:169(1963).Google Scholar
  181. 181.
    T. Makita, Rev. Phys. Chem. Japan 27:16(1957).Google Scholar
  182. 182.
    T. Makita, in The Viscosity of Gases under High Pressure (Mem. Fac. Ind. Arts, Kyoto Tech. Univ., Sci. Technol., 1955), Vol. 4, p. 19.Google Scholar
  183. 183.
    P. Malbrunot, A. Boyer, and E. Charles, Phys. Rev. A 27:1523(1983).Google Scholar
  184. 184.
    U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259(1986).Google Scholar
  185. 185.
    G. P. Matthews, C. M. S. R. Thomas, A. N. Dufty, and E. B. Smith, J. Chem. Soc., Faraday Trans. 1 72:238(1976).Google Scholar
  186. 186.
    A. Michels and A. Botzen, Physica 19:585(1953).Google Scholar
  187. 187.
    A. Michels and R. O. Gibson, Proc. Roy. Soc. Ser. A 134:288(1932).Google Scholar
  188. 188.
    A. Michels, A. Botzen, A. S. Friedman, and J. V. Sengers, Physica (Amsterdam) 22:121(1956).Google Scholar
  189. 189.
    A. Michels, A. Botzen, and W. Schuurman, Physica 20:1141(1954).Google Scholar
  190. 190.
    A. Michels, J. V. Sengers, and L. J. M. van de Klundert, Physica 29:149(1963).Google Scholar
  191. 191.
    J. Millat, M. Mustafa, M. Ross, W. A. Wakeham, and M. Zalaf, Physica A 145:461(1987).Google Scholar
  192. 192.
    J. Millat, M. J. Ross, and W. A. Wakeham, Physica A 159:28(1989).Google Scholar
  193. 193.
    D. Misic and G. Thodos, AIChE J. 11:650(1965).Google Scholar
  194. 194.
    R. Mostert, H. R. van den Berg, and P. S. van der Gulik, Int. J. Thermophys. 11:597(1990).Google Scholar
  195. 195.
    R. Mostert, P. S. van der Gulik, and H. R. van den Berg, Physica A 156:921(1989).Google Scholar
  196. 196.
    J. R. Moszynski and B. P. Singh, Proc. Symp. Thermophys. Prop. 6:22(1973).Google Scholar
  197. 197.
    R. W. Moulton and W. L. Beuschlein, Trans. AIChE 36:113(1940).Google Scholar
  198. 198.
    R. A. Mustafaev, J. Eng. Phys. 22:591(1972).Google Scholar
  199. 199.
    A. G. Nasini and G. Pastonesi, Gazz. Chim. Ital. 63:821(1933).Google Scholar
  200. 200.
    D. G. Naugle, J. Chem. Phys. 44:741(1966).Google Scholar
  201. 201.
    D. G. Naugle, J. H. Lunsford, and J. R. Singer, J. Chem. Phys. 43:4669(1966).Google Scholar
  202. 202.
    W. Nothdurft, Ann. Phys., Series 5 28:137(1937).Google Scholar
  203. 203.
    R. L. Nuttall and D. C. Ginnings, J. Res. Natl. Bur. Stand. 58:271(1957).Google Scholar
  204. 204.
    J. Patek and J. Klomfar, Fluid Phase Equilib. 198:147(2002).Google Scholar
  205. 205.
    A. N. G. Pereira and C. J. G. Raw, Phys. Fluids 6:1091(1963).Google Scholar
  206. 206.
    A. Perez Masia and A. Roig, An. R. Soc. Esp. Fis. Quim. B 54:639(1958).Google Scholar
  207. 207.
    R. W. Powers, R. W. Mattox, and H. L. Johnston, J. Am. Chem. Soc. 76:5938(1954).Google Scholar
  208. 208.
    S. Prosad, Brit. J. Appl. Phys. 3:58(1952).Google Scholar
  209. 209.
    V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, in GS SSD (Izd. Stand. Moscow, 1976).Google Scholar
  210. 210.
    C. J. G. Raw and C. P. Ellis, J. Chem. Phys. 28:1198(1958).Google Scholar
  211. 211.
    B. G. Reynes and G. Thodos, J. Chem. Eng. Data 11:137(1966).Google Scholar
  212. 212.
    E. G. Reynes and G. Thodos, Physica 30:1529(1964).Google Scholar
  213. 213.
    R. G. Richard and I. R. Shankland, Int. J. Thermophys. 10:673(1989).Google Scholar
  214. 214.
    M. Rigby and E. B. Smith, Trans. Faraday Soc. 62:54(1966).Google Scholar
  215. 215.
    H. M. Roder, J. Res. Natl. Bur. Stand. 86:457(1981).Google Scholar
  216. 216.
    H. M. Roder, J. Res. Natl. Bur. Stand. 87:279(1982).Google Scholar
  217. 217.
    H. M. Roder, in The Thermal Conductivity of Air at Low Temperatures and Low Pressures, Natl. Bur. Stand., Cryog. Eng. Lab. Note 66-7, 13 pp. (1966).Google Scholar
  218. 218.
    B. M. Rosenbaum, S. Oshen, and G. Thodos, J. Chem. Phys. 44:2831(1966).Google Scholar
  219. 219.
    J. F. Ross and G. M. Brown, Ind. Eng. Chem. 49:2026(1957).Google Scholar
  220. 220.
    A. J. Rothman and L. A. Bromley, Ind. Eng. Chem. 47:899(1955).Google Scholar
  221. 221.
    N. S. Rudenko and L. W. Schubnikow, Phys. Z. Sowjetunion 6:470(1934).Google Scholar
  222. 222.
    N. S. Rudenko, Zh. Ek. Theor. Fiz. 9:1078(1939).Google Scholar
  223. 223.
    W. M. Rutherford, J. Chem. Eng. Data 29:163(1984).Google Scholar
  224. 224.
    Y. Saji and T. Okuda, Adv. Cryo. Eng. 10:209(1965).Google Scholar
  225. 225.
    M. P. Saksena and S. C. Saxena, Phys. Fluids 9:1595(1966).Google Scholar
  226. 226.
    S. C. Saxena and G. P. Gupta, Progr. Astronaut. Aeron. 23:45(1970).Google Scholar
  227. 227.
    V. K. Saxena and S. C. Saxena, Chem. Phys. Lett. 2:44(1968).Google Scholar
  228. 228.
    S. C. Saxena and S. H. P. Chen, Mol. Phys. 29:1507(1975).Google Scholar
  229. 229.
    K. Schafer and F. W. Reiter, Z. Elektrochem. 61:1230(1957).Google Scholar
  230. 230.
    E. U. Schluender, Chem.-Ing.-Tech. 36:115(1964).Google Scholar
  231. 231.
    J.-P. Schlumpf, F. Lazarre, and P. Viallet, J. Chim. Phys. 72:631(1975).Google Scholar
  232. 232.
    W. F. Schottky, Z. Elektrochem. 66:889(1952).Google Scholar
  233. 233.
    B. Schramm, Allg. Warmetech. 12:125(1964).Google Scholar
  234. 234.
    A. C. Scott, A. I. Johns, J. J. R. Watson, and A. A. Clifford, Int. J. Thermophys. 2:103(1981).Google Scholar
  235. 235.
    H. Senftleben, Z. Angew. Phys. 16:111(1963).Google Scholar
  236. 236.
    H. Senftleben, Z. Angew. Phys. 17:86(1964).Google Scholar
  237. 237.
    A. G. Shashkov, N. A. Nesterov, V. M. Sudnik, and V. I. Aleinikova, Inzh.-Fiz. Zh. 30:669(1976).Google Scholar
  238. 238.
    R. I. Shepeleva and I. F. Golubev, Gazov. Promst. 13:44(1968).Google Scholar
  239. 239.
    V. P. Slyusar, V. M. Tretyakov, and N. S. Rudenko, Ukr. Fiz. Zh. 22:1070(1977).Google Scholar
  240. 240.
    V. P. Slyusar, V. M. Tretyakov, and N. S. Rudenko, Fiz. Nizk. Temp. 1:1159(1975).Google Scholar
  241. 241.
    E. F. II Smiley, Catholic University of America Press, Washington, D.C. (1957).Google Scholar
  242. 242.
    G. S. Springer and E. W. Wingeier, J. Chem. Phys. 59:2747(1973).Google Scholar
  243. 243.
    E. A. Stolyarov, V. V. Ipatjer, and V. P. Theodorowitsch, Zh. Fiz. Khim. 24:166(1950).Google Scholar
  244. 244.
    L. Sun, J. E. S. Venart, and R. C. Prasad, Int. J. Thermophys. 23:1487(2002).Google Scholar
  245. 245.
    L. Sun, J. E. S. Venart, and R. C. Prasad, Int. J. Thermophys. 23:357(2002).Google Scholar
  246. 246.
    B. P. Sutherland and O. Maass, Can. J. Res. 6:428(1932).Google Scholar
  247. 247.
    A. A. Tarzimanov and R. S. Salmanov, Teplofiz. Vys. Temp. 15:912(1977).Google Scholar
  248. 248.
    A. A. Tarzimanov and V. A. Arslanov, Tr. Kazan. Khim.-Tekhnol. Inst. 47:157(1971).Google Scholar
  249. 249.
    A. A. Tarzimanov and V. S. Lozovoi, Kazan' Chem.-Technol. Inst 39:45(1968).Google Scholar
  250. 250.
    W. J. Taylor and H. L. Johnston, J. Chem. Phys. 14:219(1946).Google Scholar
  251. 251.
    B. W. Tiesinga, E. Sakonidou, H. R. Van den Berg, J. Luettmer-Strathmann, and J. V. Sengers, J. Chem. Phys. 101:6944(1994).Google Scholar
  252. 252.
    D. L. Timrot, M. A. Serednitskaya, and S. A. Traktueva, Teploenergetika 16:83(1969).Google Scholar
  253. 253.
    D. L. Timrot, M. A. Serednitskaya, and S. A. Traktueva, Teploenergetika 22:84(1974).Google Scholar
  254. 254.
    D. L. Timrot, M. A. Serednitskaya, and S. A. Traktueva, Teploenergetika 22:84(1975).Google Scholar
  255. 255.
    N. J. Trappeniers, P. S. van der Gulik, and H. van den Hooff, Chem. Phys. Lett. 70:438(1980).Google Scholar
  256. 256.
    M. Trautz and A. Melster, Ann. Phys. (Leipzig) 7:409(1930).Google Scholar
  257. 257.
    M. Trautz and R. Heberling, Ann. Phys., Series 5 10:155(1931).Google Scholar
  258. 258.
    M. Trautz and R. Zink, Ann. Phys. (Leipzig) 7:427(1930).Google Scholar
  259. 259.
    N. V. Tsederberg and D. L. Timrot, Sov. Phys. Tech. Phys. 1:1791(1957).Google Scholar
  260. 260.
    N. V. Tsederberg and Z. A. Ivanova, Teploenergetika 18:69(1971).Google Scholar
  261. 261.
    R. Tufeu and B. Le Neindre, Int. J. Thermophys. 1:375(1980).Google Scholar
  262. 262.
    R. Tufeu and B. Le Neindre, Inz.-Fiz. Zh. 36:472(1979).Google Scholar
  263. 263.
    A. Uhlir, Jr., J. Chem. Phys. 20:463(1952).Google Scholar
  264. 264.
    P. S. van der Gulik and N. J. Trappeniers, Physica A 135:1(1986).Google Scholar
  265. 265.
    K. S. Van Dyke, Phys. Rev. 21:250(1923).Google Scholar
  266. 266.
    A. van Itterbeek and M. A. Claes, Physica 3:275(1936).Google Scholar
  267. 267.
    A. van Itterbeek, H. Zink, and J. Hellemans, Physica (Amsterdam) 32:489(1966).Google Scholar
  268. 268.
    A. van Itterbeek, J. Hellemans, H. Zink, and M. van Cauteren, Physica 32:2171(1966).Google Scholar
  269. 269.
    N. A. Vanicheva, L. S. Zaitseva, and L. V. Yakush, Inzh.-Fiz. Zh. 49:94(1985).Google Scholar
  270. 270.
    N. B. Vargaftik and K. Zimina, High Temp. 2:782(1964).Google Scholar
  271. 271.
    N. B. Vargaftik and N. K. Zimina, Teplofizika Vysokikh Temperatur 2:716(1964).Google Scholar
  272. 272.
    N. B. Vargaftik and O. N. Oleshchuk, Izv. Vses. Teplotekh. Inst. 15:7(1946).Google Scholar
  273. 273.
    J. Vermesse and D. Vidal, Compt. Rend. Acad. Sci. Paris 277:191(1973).Google Scholar
  274. 274.
    J. Vermesse, Ann. Phys. (Paris) 4:245(1969).Google Scholar
  275. 275.
    J. Vermesse, P. Johannin, and B. Vodar, Compt. Rend. Acad. Sci. Paris 256:3016(1963).Google Scholar
  276. 276.
    R. G. Vines, Trans. ASME 82:48(1960).Google Scholar
  277. 277.
    E. Vogel, Ber. Bunsenges. Phys. Chem. 88:997(1984).Google Scholar
  278. 278.
    E. Vogel, T. Strehlow, J. Millat, and W. A. Wakeham, Z. Phys. Chem. 270:1145(1989).Google Scholar
  279. 279.
    L. A. Weber, Int. J. Thermophys. 3:117(1982).Google Scholar
  280. 280.
    A. A. Westenberg and N. deHaas, Phys. Fluids 5:266(1962).Google Scholar
  281. 281.
    A. A. Westenberg and N. deHaas, Phys. Fluids 6:617(1963).Google Scholar
  282. 282.
    J. Wilhelm and E. Vogel, Int. J. Thermophys. 21:301(2000).Google Scholar
  283. 283.
    R. Wobser and Fr. Muller, Kolloid-Beihefte 52:165(1941).Google Scholar
  284. 284.
    K.-L. Yen, Phil. Mag. 38:582(1919).Google Scholar
  285. 285.
    M. Yorizane, S. Yoshimura, H. Masuoka, and H. Yoshida, Ind. Eng. Chem. Fundam. 22:454(1983).Google Scholar
  286. 286.
    N. F. Zhdanova, Sov. Phys. JETP 4:749(1957).Google Scholar
  287. 287.
    X. Y. Zheng, S. Yamamoto, H. Yoshida, H. Masuoka, and M. Yorizane, J. Chem. Eng. Japan 17:237(1984).Google Scholar
  288. 288.
    H. Ziebland and J. T. A. Burton, Brit. J. Appl. Phys. 6:416(1955).Google Scholar
  289. 289.
    H. Ziebland and J. T. A. Burton, Brit. J. Appl. Phys. 9:52(1958).Google Scholar
  290. 290.
    H. Ziebland and K. N. Marsh, Pure Appl. Chem. 53:1863(1977).Google Scholar
  291. 291.
    V. N. Zozulya and Yu. P. Blagoi, Sov. Phys.-JETP 39:99(1974).Google Scholar
  292. 292.
    E. W. Lemmon and R. T Jacobsen, A new functional form and fitting techniques for equations of state with application to pentafluoroethane (HFC-125), submitted to J. Phys. Chem. Ref. Data (2004).Google Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  1. 1.Physical and Chemical Properties DivisionNational Institute of Standards and TechnologyBoulderU.S.A.
  2. 2.Idaho National Engineering and Environmental LaboratoryIdaho FallsU.S.A

Personalised recommendations