Advertisement

International Journal of Primatology

, Volume 24, Issue 6, pp 1143–1162 | Cite as

Dietary and Feeding Differences Between Sympatric Propithecus diadema diadema and Indri indri

  • Joyce A. Powzyk
  • Christopher B. Mowry
Article

Abstract

We analyzed the dietary profiles and feeding behaviors of Propithecus diadema diadema and Indri indri in a community of animals that reside in midaltitude rain forest within Madagascar's Mantadia National Park. Propithecus diadema diadema ate a diverse mixture of fruits, seeds, flowers and young leaves, while the bulk of the diet of Indri indri consisted of young leaves, which resulted in significantly higher levels of fat and water-soluble carbohydrates in foods eaten by Propithecus diadema diadema. Fiber values of items eaten are high (54% NDF) for both species, though not significantly different between them. The preference for immature foliage by Indri indri suggests that their overall intake of fiber is greater than that of Propithecus diadema diadema, which had a high proportion of non-leaf material in their diet. We propose that differences in gut morphology between the two indriids contribute to their disparate diets. Levels of secondary compounds were high in certain food items, but overall they are also not significantly different between the two indriid diets. Propithecus diadema diadema exhibited a strong preference for 2 alkaloid-containing seed species, while no food of Indri indri contained alkaloids. In addition, Propithecus diadema diadema consumed a higher diversity of plant species on a daily/yearly basis, exhibited more feeding bouts on a daily basis, and their feeding bouts (on young leaves, fruit and flowers) are significantly shorter in duration than those of Indri indri. Furthermore, Propithecus diadema diadema had twice the number of geophagic episodes of Indri indri.

indriids feeding ecology gut morphology nutrition secondary compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, J. (1974). Observational study of behavior: Sampling methods. Ann. Rev. Ecol. Syst. 5: 221-248.Google Scholar
  2. Campbell, J. L., Eisemann, J. H., Glander, K. E., and Crissey, S. D. (1999). Intake, digestibility, and passage of a commercially designed diet by two Propithecus species. Am. J. Primatol. 48: 237-246.Google Scholar
  3. Campbell, J. L., Eisemann, J. H., Williams, C. V., and Glenn, K. M. (2000). Description of the gastrointestinal tract of five lemur species: Propithecus tattersalli, Propithecus verreauxi coquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. Am. J. Primatol. 52: 133-142.Google Scholar
  4. Chapman, C. A., Chapman, L. J., Bjorndal, K. A., and Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. Int. J. Primatol. 23: 283-310.Google Scholar
  5. Charles-Dominique, P. (1990). Ecological adaptations related to locomotion in primates: An introduction. In Jouffroy, F. K., Stack, M. H., and Niemitz, C. (Eds.), Gravity, Posture and Locomotion in Primates, Editrice Sedicesimo, Fienza.Google Scholar
  6. Conklin-Brittain, N. L., Wrangham, R. W., and Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. II. Macronutrients. Int. J. Primatol. 19: 971-998.Google Scholar
  7. Diamond, J. (1999). Dirty eating for healthy living. Nature 400: 120-121.Google Scholar
  8. Demment, M. W., and Van Soest, P. J. (1985). A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. Am. Nat. 125: 641-672.Google Scholar
  9. Foley, W. J., and McArthur, C. (1994). The effects and cost of allelochemicals for mammalian herbivores: An ecological perspective. In Chivers, D. J., and Langer, P. (Eds.), The Digestive System in Mammals. Cambridge University Press, Cambridge, UK, pp. 370-391.Google Scholar
  10. Ganzhorn, J., Wright, P. C., and Ratsimbazafy, J. (1999). Primate communities: Madagascar. In Fleagle, J. G., Janson, C. H., and Reed, K. E. (Eds.), Primate Communities, Cambridge University Press, Cambridge, UK, pp. 75-89.Google Scholar
  11. Ganzhorn, J. U. (1988). Food partitioning among Malagasy primates. Oecologia 75: 436-450.Google Scholar
  12. Ganzhorn, J. U. (1992). Leaf chemistry and the biomass of folivorous primates in tropical forests. Oecologia 91: 540-547.Google Scholar
  13. Ganzhorn, J. U. (2002). Distribution of a folivorous lemur in relation to seasonally varying food resources: Integrating quantitative and qualitative aspects of food characteristics. Oecologia 131: 427-435.Google Scholar
  14. Ganzhorn, J. U., and Abraham, J. P. (1991). Possible role of plantations for lemur conservation in Madagascar: Food for folivorous species. Folia Primatol. 56: 171-176.Google Scholar
  15. Gilardi, J., Duffey, S., Munn, C., and Tell, L. (1999). Biochemical functions of geophagy in parrots: Detoxification of dietary toxins and cytoprotective effects. J. Chem. Ecol. 25: 897-922.Google Scholar
  16. Glander, K. E. (1978). Howling monkey feeding behavior and plant secondary compounds: A study of strategies. In Montgomery, G. G. (ed.), The Ecology of Aboreal FolivoRes. Academic Press, Washington, DC, pp. 561-573.Google Scholar
  17. Glander, K. E., and Powzyk, J. A. (1995). Morphometrics of wild Indri indri and Propithecus diadema diadema, International Conference on the Biology and Conservation of Prosimians, London.Google Scholar
  18. Hagerman, A. E., and Butler, L. G. (1991). Tannins and Lignins. In Rosenthal, G. A., and Berenbaum, M. R. (Eds.), Herbivores: Their Interactions With Secondary Plant Metabolites, 2nd edn., Vol. I. The Chemical Participants, Academic Press, San Diego, CA, pp. 355-388.Google Scholar
  19. Harborne, J. B. (1982). Introduction to Ecological Biochemistry, 2nd edn, Academic Press, London.Google Scholar
  20. Hemingway, C. A. (1996). Morphology and phenology of seeds and whole fruit eaten by Milne-Edwards' sifaka, Propithecus diadema edwardsi, in Ranomafana National Park, Madagascar. Int. J. Primatol. 17: 637-659.Google Scholar
  21. Hemingway, C. A. (1998). Selectivity and variability in the diet of Milne-Edwards' sifakas (Propithecus diadema edwardsi): Implications for folivory and seed-eating. Int. J. Primatol. 19: 355-377.Google Scholar
  22. Hemingway, C. A. (1999). Time budgets and foraging in a Malagasy primate: Do sex differences reflect reproductive condition and female dominance? Behav. Ecol. Sociobiol. 45: 311-322.Google Scholar
  23. Hill, W. C. O. (1953). Primates-Strepsirhini, Edinburgh Press, Edinburgh, UK.Google Scholar
  24. Hladik, C. M. (1977a). A comparative study of the feeding strategies of two sympatric species of leaf monkeys. In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, London, pp. 324-353.Google Scholar
  25. Hladik, C. M. (1977b). Chimpanzees of Gabon and chimpanzees of Gombe: Some comparative data on the diet. In Clutton-Brock, T. H. (ed.), Primate Ecology, Academic Press, London, pp. 481-501.Google Scholar
  26. Hladik, C. M. (1978). Adaptive strategies of primates in relation to leaf-eating. In Montgomery, G. G. (ed.), The Ecology of Aboreal Folivores, Academic Press, Washington, DC, pp. 373-395.Google Scholar
  27. Hladik, C. M., and Simmen, B. (1996). Taste perception and feeding behavior in nonhuman primates and human populations. Evol. Anthropol. 5: 58-71.Google Scholar
  28. Hume, I. D. (1999). Marsupial Nutrition. Cambridge University Press, Melbourne.Google Scholar
  29. Karban, R., and Baldwin, I. T. (1997). Induced Responses to Herbivory, University of Chicago Press, Chicago.Google Scholar
  30. Krishnamani, R., and Mahaney, W. C. (2000). Geophagy among primates: Adaptive significance and ecological consequences. Anim. Behav. 59: 899-915.Google Scholar
  31. Lambert, J. (1998). Primate digestion: Interactions between anatomy, physiology, and feeding ecology. Evol. Anthropol. 7: 8-20.Google Scholar
  32. Lawler, I. R., Foley, W. J., Eschler, B. M., and Pass, D. M. (1998). Intraspecific variation in Eucalyptus secondary metabolites determines food intake by folivorous marsupials. Oecologia 116: 160-169.Google Scholar
  33. McArthur, C., Hagerman, A. E., and Robbins, C. T. (1991). Physiological strategies of mammalian herbivores against plant defenses. In Palo, R. T., and Robbins, C. T. (Eds.), Plant Defenses Against Mammalian Herbivory, CRC Press, Boca Raton, FL, pp. 103-114.Google Scholar
  34. McKey, D. B., Gartlan, J. S., Waterman, P. G., and Choo, G. M. (1981). Food selection by black colobus monkeys (Colobus satanus) in relation to plant chemistry. Biol. J. Linn. Soc. 16: 115-146.Google Scholar
  35. Meyers, D. M., and Wright, P. C. (1993). Resource tracking: Food availability and Propithecus seasonal tracking. In Kappler, P. M., and Ganzhorn, J. U. (Eds.), Lemur Social Systems and Their Ecological Basis. Plenum, New York, pp. 179-192.Google Scholar
  36. Milton, K. E. (1979). Factors influencing leaf choice by howler monkeys: A test of some hypotheses of food choice by generalist herbivores. Am. Nat. 114: 362-378.Google Scholar
  37. Milton, K. E. (1980). The Foraging Strategy of Howler Monkeys, Columbia University Press, New York.Google Scholar
  38. Milton, K. E. (1981). Food choice and digestive strategies of two sympatric primate species. Am. Nat. 117: 496-505.Google Scholar
  39. Mowry, C. B., Decker, B. S., and Shure, D. J. (1996). The role of phytochemistry in dietary choices of Tana River red colobus monkeys (Procolobus badius rufomitratus). Int. J. Primatol. 17: 63-84.Google Scholar
  40. Oates, J. F. (1978). Water-plant and soil consumption by guereza monkeys (Colobus guereza): A relationship with minerals and toxins in the diet? Biotropica 10: 241-253.Google Scholar
  41. Oates, J. F., Swain, T., and Zantovska, J. (1977). Secondary compounds and food selection by colobus monkeys. Biochem. Syst. Ecol. 5: 317-321.Google Scholar
  42. Oates, J. F., Waterman, P. G., and Choo, G. M. (1980). Food selection by the South Indian leaf monkey, Presbytis johnii, in relation to leaf chemistry. Oecologia 45: 45-56.Google Scholar
  43. Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G. L., and Mole, S. (1990). Determinants of variation in tropical forest primate biomass: New evidence from West Africa. Ecology. 71: 328-343.Google Scholar
  44. Parra, R. (1978). Comparison of foregut and hindgut fermentation in herbivores. In Montgomery, G. G. (ed.), The Ecology of Aboreal Folivores, Smithsonian, Washington, DC, pp. 205-229.Google Scholar
  45. Pollock, J. I. (1977). The ecology and sociology of feeding in Indri indri. In Clutton-Brock, T. H. (ed.), Primate Ecology: Studies of Feeding and Ranging Behavior in Lemurs, Monkeys and Apes, Academic Press, London, pp. 37-69.Google Scholar
  46. Powzyk, J. A. (1997). The socio-ecology of two sympatric indriids: Propithecus diadema diadema and Indri indri, a comparison of feeding strategies and their possible repercussions on species-specific behaviors, PhD Dissertation, Duke University, Durham, North Carolina, USA.Google Scholar
  47. Raffauf, R. F. (1970). A Handbook of Alkaloids and Alkaloid-Containing Plants. Wiley-Interscience, New York.Google Scholar
  48. Remis, M. J., Dierenfeld, E. S., Mowry, C. B., and Carroll, R. W. (2001). Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22: 807-836.Google Scholar
  49. Rosenthal, G. A., and Berenbaum, M. R. (Eds.) (1991). Herbivores: Their Interactions With Secondary Plant Metabolites, 2nd edn., Vol. I. The Chemical Participants, Academic Press, San Diego, CA.Google Scholar
  50. Rosenthal, G. A., and Berenbaum, M. R. (Eds.) (1992). Herbivores: Their Interactions With Secondary Plant Metabolites, 2nd edn., Vol. II. Ecological and evolutionary processes, Academic Press, San Diego, CA.Google Scholar
  51. Rosner, B. (1990). Fundamentals of Biostatistics, 3rd edn. PWS-Kent, Boston.Google Scholar
  52. Schoener, T. W. (1968). The Anolis lizard of Bimini: Resource partitioning in a complex fauna. Ecology 49: 704-726.Google Scholar
  53. Simmen, B., Hladik, A., Ramasiarisoa, P. L., Iaconelli, S., and Hladik, C. M. (1999). Taste discrimination in lemurs and other primates, and the relationships to distribution of plant allelochemicals in different habitats of Madagascar. In Rakotosamimanana, B., Rasamimanana, H., Ganzhorn, J., and Goodman, S. (Eds.), New Directions in Lemur Studies, Plenum, New York, pp. 201-219.Google Scholar
  54. Struhsaker, T. T., Cooney, D. O., and Siex, K. S. (1997). Charcoal consumption by Zanzibar red colobus monkeys: Its function and ecological and demographic consequences. Int. J. Primatol. 18: 61-72.Google Scholar
  55. Waterman, P. G., and Kool, K. M. (1994). Food selection and plant chemistry. In Oates, J. F., and Davies, A. G. (Eds.), Colobine Monkeys: Their Ecology, Behaviour and Evolution, Cambridge University Press, Cambridge, UK, pp. 251-284.Google Scholar
  56. Waterman, P. G., and Mole, S. (1994). Analysis of Phenolic Plant Metabolites. Blackwell, Oxford.Google Scholar
  57. Wrangham, R. W., Conklin-Brittain, N. L., and Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. Int. J. Primatol. 19: 949-969.Google Scholar
  58. Wright, P. C. (1987). Diet and ranging patterns of Propithecus diadema edwardsi in Madagascar. Am. J. Phys. Anthropol. 72: 218.Google Scholar

Copyright information

© Plenum Publishing Corporation 2003

Authors and Affiliations

  • Joyce A. Powzyk
    • 1
  • Christopher B. Mowry
    • 2
  1. 1.Department of Biological Anthropology and AnatomyDuke UniversityDurham
  2. 2.Department of BiologyBerry CollegeMt. Berry

Personalised recommendations