Modeling Electrical Properties of Gold Films at Infrared Frequency Using FDTD Method

  • Rui Qiang
  • Richard L. Chen
  • Ji Chen


The finite-difference time-domain (FDTD) algorithm is applied to analyze the electrical properties of gold films, whose relative permittivity is described by the Lorentz-Drude model in infrared and optical frequencies. The skin depth and reflectivity are calculated using the frequency-dependent FDTD method. The results are compared to analytical solutions and an excellent agreement is reported.

FDTD Gold Film Skin depth and Reflectivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Morgan M. D., Home W. E., Sundaram V., Wolfe J. C., Pendharkar S. V. and Tiberion R., "Application of optical filters fabricated by masked ion beam lithography", J. Vac. Sci. Technol. B,Nov/Dec 1996, Vol. 14 No. 6, pp. 3903–3906.CrossRefGoogle Scholar
  2. [2]
    Wu T. K., "Infrared filters for high-efficiency thermovoltaic devices", Microwave and Optical Technology Letters,May 1997, Vol. 15 No. 1, pp. 9–12.CrossRefGoogle Scholar
  3. [3]
    Raynolds J. E., Munk B. A., Pryor J. B., and Marhefka R. J., "Ohimc loss in frequency-selective surfaces", Journal of Applied Physics,May 2003, Vol. 93 No. 9, pp. 5346–5358.CrossRefGoogle Scholar
  4. [4]
    Ehreneich H. and Philipp H. R. and Segall B., "Optical properties of aluminum," Phys, Rev. 132, 1963, pp. 1918–1629.Google Scholar
  5. [5]
    Ehrenreich H. and Philipp H. R., "Optical properties of Ag and Cu," Phys. Rev. 128, 1962, pp. 1622–1629.CrossRefGoogle Scholar
  6. [6]
    Rakic A. D., Djurisic A. B., Elazar J. M., and Majewski M. L., "Optical properties of metallic films for vertical-cavity optoelectronic devices", Applied Optics,August 1998, Vol. 37 No. 22,pp. 5271–5283.Google Scholar
  7. [7]
    K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagat.,Vol. 17, 1966, pp. 585–589.Google Scholar
  8. [8]
    Taflove A. Computational Electrodynamics: The Finite Difference Time Domain Method. Norwood, MA: Artech House, 2000.Google Scholar
  9. [9]
    Luebbers R., Hunsberger F., Kunz K., Standler R., and Scheider M., "A frequency-dependent finite-difference time-domain formulation for dispersive materials", IEEE Tran. Electromag. Compat.,vol.EMC-32, Aug. 1990, pp. 222–227.CrossRefGoogle Scholar
  10. [10]
    Sullivan D. M., "Frequency-dependent FDTD methods using Z transforms', IEEE Trans. Antenna and Propagat.,vol. AP-40, Oct. 1992, pp.1223–1230.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 2004

Authors and Affiliations

  • Rui Qiang
    • 1
  • Richard L. Chen
    • 1
  • Ji Chen
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of HoustonHoustonUSA

Personalised recommendations