, Volume 28, Issue 4, pp 207–214 | Cite as

Macrophages Restrain Contraction of an In Vitro Wound Healing Model

  • P. M. Newton
  • J. A. Watson
  • R. G. Wolowacz
  • E. J. Wood


Significant numbers of macrophages are present during all stages of dermal wound repair, but the functional significance of these macrophages, especially during the later contraction and remodelling stages of repair, remains unclear. We investigated the effect of macrophages on wound contraction using a novel in vitro model based upon the contracting dermal equivalent (DE). Macrophages were found to reversibly restrain DE contraction, a rapid and sustained effect that was enhanced by lipolysaccharide (LPS) treatment of macrophages and partially inhibited by hydrocortisone. Prolonged inhibition of contraction was strongly correlated with an inhibition of fibroblast proliferation. The rapid contraction-inhibiting effect of the macrophages was mediated through activation of protein kinase C (PKC). These results suggest that inflammatory macrophages restrain the later stages of wound repair, namely matrix contraction and remodeling. The novel in vitro model established here provides a useful system for examining fibroblast–macrophage interactions in the healing wound.

macrophage wound contraction fibroblast collagen gel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O'Leary, R., E. J. Wood, and P. J. Guillou. 2002. Pathological scar-ring: Strategic interventions. Eur. J. Surg. 168(10):523–534.Google Scholar
  2. 2.
    Nedelec, B., A. Ghahary, P. G. Scott, and E. E. Tredget. 2000. Control of wound contraction: Basic and clinical features. Hand Clin. 16(2):289–302.Google Scholar
  3. 3.
    Powell, D. W., R. C. Mifflin, J. D. Valentich, S. E. Crowe, J. I. Sadda, A. B. West, and I. Myofibroblasts. 1999. Myofibroblasts I, Paracrine cells important in health and disease. Am.J.Physiol. 277(1):C1–C9.Google Scholar
  4. 4.
    Dyson, M., S. Young, C. L. Pendle, D. F. Webster, and S. M. Lang. 1988. Comparison of the effects of moist and dry conditions on dermal repair. J. Invest. Dermatol. 91(5):434–439.Google Scholar
  5. 5.
    Clark, R. A. F. 1996. Wound repair: Overview and general consid-erations. In: The Molecular and Cellular Biology of Wound Repair, Chapter 1, 2nd edn., Plenum Press, New York.Google Scholar
  6. 6.
    Riches, D. W.1996. Macrophage involvement in wound repair, remodelling and fibrosis. In: The Molecular and Cellular Biology of Wound Repair, Chapter 3., 2nd edn., R. A. F. Clark, ed., Plenum Press, New York.Google Scholar
  7. 7.
    Martin, P., D. D'Souza, J. Martin, R. Grose, L. Cooper, R. Maki, and S. R. McKercher. 2003. Wound healing in the PU.1 null mouse-tissue repair is not dependent on inflammatory cells. Curr. Biol. 13(13):1122–1128.Google Scholar
  8. 8.
    Bell, E., B. Ivarsson, and C. Merrill. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Natl. Acad. Sci. USA 76(3):1274–1278.Google Scholar
  9. 9.
    Grinnell, F. 2000. Fibroblast–collagen–matrix contraction: Growth-factor signalling and mechanical loading. Trends Cell Biol. 10(9):362–365.Google Scholar
  10. 10.
    Vaughan, M. B., E. W. Howard, and J. J. Tomasek. 2000. Transforming growth factor-beta1 promotes the morphological and functional differentiation of the myofibroblast. Exp. Cell Res. 257(1):180–189.Google Scholar
  11. 11.
    Scott, K. A., E. J. Wood, and E. H. Karran. 1998. A matrix metal-loproteinase inhibitor which prevents fibroblast-mediated collagen lattice contraction. FEBS Lett. 441(1):137–140.Google Scholar
  12. 12.
    Garlick, J. A. and L. B. Taichman. 1994. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab. In-vest. 70(6):916–924.Google Scholar
  13. 13.
    De, S. K., E. D. Reis, and M. D. Kerstein. 2002. Wound treatment with human skin equivalent. J. Am. Podiatr. Med. Assoc. 92(1): 19–23.Google Scholar
  14. 14.
    Harris, P. and P. Ralph. 1985. Human leukemic models of myelomonocytic development: A review of the HL-60 and U937 cell lines. J. Leukoc. Biol. 37(4):407–422.Google Scholar
  15. 15.
    Welgus, H. G., N. L. Connolly, and R. M. Senior. 1986. 12-o-Tetradecanoyl-phorbol-13-acetate-differentiated U937 cells express a macrophage-like profile of neutral proteinases. High levels of se-creted collagenase and collagenase inhibitor accompany low levels of intracellular elastase and cathepsin G. J. Clin. Invest. 77(5):1675–1681.Google Scholar
  16. 16.
    Chen, V., D. Croft, P. Purkis, and I. M. Kramer. 1998. Co-culture of synovial fibroblasts and differentiated U937 cells is sufficient for high interleukin-6 but not interleukin-1beta or tumour necrosis factor-alpha release. Br. J. Rheumatol. 37(2):148–156.Google Scholar
  17. 17.
    Scott, B. B., L. M. Weisbrot, J. D. Greenwood, E. R. Bogoch, C. J. Paige, and E. C. Keystone. 1997. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis Rheum. 40(3):490–498.Google Scholar
  18. 18.
    Boyce, D. E., A. Thomas, J. Hart, K. Moore, and K. Harding. 1997. Hyaluronic acid induces tumour necrosis factor-alpha production by human macrophages in vitro. Br.J.Plast.Surg. 50(5):362–368.Google Scholar
  19. 19.
    Moore, K., A. Thomas, and K. G. Harding. 1997. Iodine released from the wound dressing Iodosorb modulates the secretion of cy-tokines by human macrophages responding to bacterial lipopolysac-charide. Int. J. Biochem. Cell Biol. 29(1): 163–171.Google Scholar
  20. 20.
    Thomas, A., K. G. Harding, and K. Moore. 2000. Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-alpha. Biomaterials 21(17): 1797–1802.Google Scholar
  21. 21.
    Minta, J. O. and L. Pambrun. 1985. In vitro induction of cytologic and functional differentiation of the immature human monocyte-like cell line U-937 with phorbol myristate acetate. Am. J. Pathol. 119(1):111–126.Google Scholar
  22. 22.
    Hosoya, H. and T. Marunouchi. 1992. Differentiation and dediffer-entiation of the human monocytic leukemia cell line, U937. Cell Struct. Funct. 17(5):263–269.Google Scholar
  23. 23.
    Bachus, K. E., E. Doty, A. F. Haney, and J. B. Weinberg. 1995. Differential effects of interleukin-1 alpha, tumor necrosis factor-alpha, indomethacin, hydrocortisone, and macrophage co-culture on the proliferation of human fibroblasts and peritoneal mesothelial cells. J. Soc. Gynecol. Investig. 2(4):636–642.Google Scholar
  24. 24.
    Metzger, Z., D. Berg, and M. Dotan. 1997. Fibroblast growth in vitro suppressed by LPS-activated macrophages. Reversal of suppression by hydrocortisone. J. Endod. 23(8):517–521.Google Scholar
  25. 25.
    Schultz, R. M., M. A. Chirigos, J. N. Stoychkov, and N. A. Pavlidis. 1979. Factors affecting macrophage cytotoxic activity with particu-lar emphasis on corticosteroids and acute stress. J. Reticuloendothel. Soc. 26(1):83–92.Google Scholar
  26. 26.
    Danowski, B. A. and A. K. Harris. 1988. Changes in fibroblast contractility, morphology, and adhesion in response to a phorbol ester tumor promoter. Exp. Cell Res. 177(1):47–59.Google Scholar
  27. 27.
    Guidry, C., 1993. Fibroblast contraction of collagen gels requires activation of protein kinase C. J. Cell Physiol. 155(2):358–367.Google Scholar
  28. 28.
    Shiota, T., D. H. Bernanke, A. D. Parent, and K. Hasui. 1996. Protein kinase C has two different major roles in lattice compaction enhanced by cerebrospinal fluid from patients with subarachnoid hemorrhage. Stroke 27(10):1889–1895.Google Scholar
  29. 29.
    Xu, J. and R. A. Clark. 1997. A three-dimensional collagen lat-tice induces protein kinase C-zeta activity: Role in alpha2 inte-grin and collagenase mRNA expression. J. Cell Biol. 136(2):473–483.Google Scholar
  30. 30.
    Chandrasekher, G., N. G. Bazan, and H. E. Bazan. 1998. Selective changes in protein kinase C (PKC) isoform expression in rabbit corneal epithelium during wound healing. Inhibition of corneal epithelial repair by PKCalpha antisense. Exp. Eye Res. 67(5):603–610.Google Scholar
  31. 31.
    Wallis, S., S. Lloyd, I. Wise, G. Ireland, T. P. Fleming, and D. Garrod. 2000. The alpha isoform of protein kinase C is involved in signaling the response of desmosomes to wound-ing in cultured epithelial cells. Mol. Biol. Cell. 11(3):1077–1092.Google Scholar
  32. 32.
    Wang, Y. C., Y. S. Hsieh, Y. W. Tang, and J. Y. Liu. 1999. Protein kinase C isoforms in the epidermal tissues of normal and postburn human skin. Biochem. Mol. Biol. Int. 47(4):673–679.Google Scholar
  33. 33.
    Chen, L., L. R. Wright, C. H. Chen, S. F. Oliver, P. A. Wender, and D. Mochly-Rosen. 2001. Molecular transporters for peptides: Delivery of a cardioprotective epsilon PKC agonist peptide into cells and intact ischemic heart using a transport system, R(7). Chem. Biol. 8(12):1123–1129.Google Scholar
  34. 34.
    Rowling, P. J., M. J. Raxworthy, E. J. Wood, J. N. Kearney, and W. J. Cunliff. 1990. Fabrication and reorganization of dermal equivalents suitable for skin grafting after major cutaneous injury. Biomaterials 11(3):181–185.Google Scholar
  35. 35.
    Arora, P. D., N. Narani, and C. A. McCulloch. 1999. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am. J. Pathol. 154(3):871–882.Google Scholar
  36. 36.
    Mio, T., Y. Adachi, D. J. Romberger, R. F. Ertl, and S. I. Rennard. 1996. Regulation of fibroblast proliferation in three-dimensional collagen gel matrix. In Vitro Cell Dev. Biol. Anim. 32(7):427–433.Google Scholar
  37. 37.
    Zhu, Y., C. M. Skold, X. Liu, H. Wang, T. Kohyama, F. Q. Wen, R. F. Ertl, and S. I. Rennard. 2001. Fibroblasts and monocyte macrophages contract and degrade three-dimensional collagen gels in extended co-culture. Respir Res. 2(5):295–299.Google Scholar
  38. 38.
    Skold, C. M., X. D. Liu, T. Umino, Y. K. Zhu, R. F. Ertl, D. J. Romberger, and S. I. Rennard. 2000. Blood monocytes attenuate lung fibroblast contraction of three-dimensional collagen gels in coculture. Am. J. Physiol. Lung Cell Mol. Physiol. 279(4):L667–L674.Google Scholar
  39. 39.
    Dostal, G. H. and R. L. Gamelli. 1990. The differential effect of corticosteroids on wound disruption strength in mice. Arch. Surg. 125(5):636–640.Google Scholar
  40. 40.
    Paxton, T. P., R. H. Miles, and R. L. Gamelli. 1995. Differential effects of 21-aminosteroids on wound healing. J. Trauma. 38(6):920–923.Google Scholar
  41. 41.
    Connell, P. G. and C. C. Harland. 2000. Treatment of keloid scars with pulsed dye laser and intralesional steroid. J. Cutan. Laser. Ther. 2(3): 147–150.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • P. M. Newton
    • 1
  • J. A. Watson
    • 2
  • R. G. Wolowacz
    • 2
  • E. J. Wood
    • 1
  1. 1.Skin Research Centre, School of Biochemistry and Molecular BiologyUniversity of LeedsUK
  2. 2.Smith and Nephew Group Research CentreYorkUK

Personalised recommendations