, Volume 28, Issue 4, pp 177–188

Sialylation of ICAM-2 on Platelets Impairs Adhesion of Leukocytes via LFA-1 and DC-SIGN

  • Kim S. C. Weber
  • Ronen Alon
  • Lloyd B. Klickstein


Intercellular adhesion molecule (ICAM)-2 is highly expressed on platelets and endothelium and is a counter-receptor for the leukocyte integrin, lymphocyte function-associated antigen-1 (LFA-1) and for the dendritic cell-specific, ICAM-grabbing non-integrin (DC-SIGN) protein. In this study, we investigated structural and functional differences between ICAM-2 from platelets and that from endothelial cells. The isoelectric point (pI) of ICAM-2 from HUVEC was pH 3.5–4.3, whereas that of platelet ICAM-2 was more acidic at pH 3.0–3.7. This charge difference was abolished by treatment with N-glycanase or neuraminidase, thus it was due to cell-specific N-linked glycosylation. Purified, immobilized platelet ICAM-2 supported 50% less adhesion of LFA-1-bearing T cells than did purified HUVEC ICAM-2 and no adhesion was observed of monocyte-derived immature dendritic cells via DC-SIGN to platelet ICAM-2. Treatment of platelet ICAM-2 with neuraminidase abolished these functional differences. These findings demonstrated that physiologic sialylation of platelet ICAM-2 renders it less able than endothelial ICAM-2 to support adherence of leukocytes.

platelets dendritic cells cell adhesion ICAM integrin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Celi, A., R. Lorenzet, B. Furie, and B. C. Furie. 1997. Platelet-leukocyte-endothelial cell interaction on the blood vessel wall. Semin. Hematol. 34:327–335.Google Scholar
  2. 2.
    Marlin, S. D. and T. A. Springer. 1987. Purified intercellular ad-hesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen 1 (LFA-1). Cell. 51:813–819.Google Scholar
  3. 3.
    Dustin, M. L., R. Rothlein, A. K. Bhan, C. A. Dinarello, and T. A. Springer. 1986. Induction by Il-1 and interferon-γ: tissue distri-bution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 137:245–254.Google Scholar
  4. 4.
    Staunton, D. E., M. L. Dustin, and T. A. Springer. 1989. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature. 339:61–64.Google Scholar
  5. 5.
    Simmons, D., M. W. Makgoba, and B. Seed. 1988. ICAM, an ad-hesion ligand for LFA-1, is homologous to the neural cell adhesion molecule NCAM. Nature. 331:624–627.Google Scholar
  6. 6.
    Vazeux, R., P. A. Hoffman, J. K. Tomita, E. S. Dickinson, R. L. Jasman, T. St. John, and W. M. Gallatin. 1992. Cloning and charac-terization of a newintercellular adhesion molecule ICAM-R. Nature. 360:485–488.Google Scholar
  7. 7.
    Fawcett, J., C. L. L. Holness, L. A. Needham, H. Turley, K. C. Gatter, D. Y. Mason, and D. L. Simmons. 1992. Molecular cloning of ICAM-3 a third ligand for LFA-1, constitutively expressed on resting leukocytes. Nature. 360:481–484.Google Scholar
  8. 8.
    de Fougerolles, A. R, and T. A. Springer. 1992. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule 1 on resting lymphocytes. J. Exp. Med. 175:185–190.Google Scholar
  9. 9.
    Staunton, D. E., S. D. Marlin, C. Stratowa, M. L. Dustin, and T. A. Springer. 1988. Primary structure of intercellular adhesion molecule 1 (ICAM-1) demonstrates interaction between members of the im-munoglobulin and integrin supergene families. Cell. 52:925–933.Google Scholar
  10. 10.
    de Fougerolles, A. R., L. B. Klickstein, and T. A. Springer. 1993. Cloning and expression of ICAM-3 reveals strong homology to other Ig family counter-receptors for LFA-1. J. Exp. Med. 177:1187–1192.Google Scholar
  11. 11.
    Geijtenbeek, T. B. H., D. J. E. B. Krooshoop, D. A. Bleijs, S. J. van Vliet, G. C. F. van Duijnhoven, V. Grabovsky, R. Alon, C. G. Figdor, and Y. van Kooyk. 2000. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1:353–357.Google Scholar
  12. 12.
    Geijtenbeek, T. B. H., R. Torensma, S. J. van Vliet, G. C. F. van Duijnhoven, G. J. Adema, Y. van Kooyk, and C. G. Figdor. 2000. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100:491–494.Google Scholar
  13. 13.
    de Fougerolles, A. R., S. A. Stacker, R. Schwarting, and T. A. Springer. 1991. Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1. J. Exp. Med. 174:253–267.Google Scholar
  14. 14.
    Diacovo, T. G., A. R. de Fougerolles, D. F. Bainton, and T. A. Springer. 1994. A functional integrin ligand on the surface of platelets: Intercellular adhesion molecule-2. J. Clin. Invest. 94:1243–1251.Google Scholar
  15. 15.
    McLaughlin F., B. P. Hayes, C. M. Horgan, J. E. Beesley, C. J. Campbell, and R. Randi. 1998. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β down-regulate intercellular adhesion molecule (ICAM)-2 expression on the endothelium. Cell Adhes. Commun. 6:381–400.Google Scholar
  16. 16.
    Diacovo, T. G., S. J. Roth, J. M. Buccola, D. F. Bainton, and T. A. Springer. 1996. Neutrophil rolling, arrest, and transmigration across activated, surface-adherent platelets via sequential action of P-selectin and the β 2 integrin CD11b/CD18. Blood. 88:146–157.Google Scholar
  17. 17.
    Yelton, D. E., C. Desaymard, and M. D. Scharff. 1981. Use of mon-oclonal anti-mouse immunoglobulin to detect mouse antibodies. Hybridoma 1:5–11.Google Scholar
  18. 18.
    Cao, X., M. Sugita, N. van der Wel, J. Lai, R. A. Rogers, P. J. Peters, and M. B. Brenner. 2002. CD1 molecules efficiently present antigen in immature dendritic cells and traffic independently of MHC class II during dendritic cell maturation. J. Immunol. 169:4770–4777.Google Scholar
  19. 19.
    Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.Google Scholar
  20. 20.
    Merrill, C. R., M. L. Dunau, and D. Goldman. 1981. A rapid sensitive silver stain for polypeptides in polyacrylamide gels. Anal. Biochem. 110:201–207.Google Scholar
  21. 21.
    Fraker, P. J. and J. C. Speck. 1978. Protein and cell membrane iodination with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3,6-diphenyl glycoluril. Biochem. Biophys. Res. Commun. 80:849–857.Google Scholar
  22. 22.
    Weber, K. S. C., M. R. York, T. A. Springer, and L. B. Klickstein. 1997. Characterization of lymphocyte function-associated antigen (LFA-1)-deficient T cell lines. The αL and β2 subunits are interdependent for cell surface expression. J. Immunol. 158:273–279.Google Scholar
  23. 23.
    O'Farrell, P. H., 1975. High resolution two-dimensional elec-trophoresis of proteins. J. Biol. Chem. 250:4007–4021.Google Scholar
  24. 24.
    Tarentino, A. L, C. M Gomez, and T. H. Plummer. 1985. Deglyco-sylation of asparagine-linked glycans by peptide: N-Glycosidase F. Biochemistry 24:4665–4671.Google Scholar
  25. 25.
    Diamond, M. S., D. E. Staunton, A. R. de Fougerolles, S. A. Stacker, J. Garcia-Aguilar, M. L. Hibbs, and T. A. Springer. 1990. ICAM-1 (CD54): A counter-receptor for Mac-1 (CD11b/CD18). J. Cell. Biol. 111:3129–3139.Google Scholar
  26. 26.
    Sadhu, C., B. Lipsky, H. P. Erickson, J. Hayflick, K. O. Dick, W. M. Gallatin, and D. E. Staunton. 1994. LFA-1 binding site in ICAM-3 contains a conserved motif and non-contiguous amino acids. Cell Adhes. Comm. 2:429–440.Google Scholar
  27. 27.
    Weber, C., R. Alon, and T. A. Springer. 1996. Sequential regulation of α4β1 and α5β1 integrin avidity by CC chemokines in mono-cytes: Implications for transendothelial chemotaxis. J. Cell. Biol. 134:1063–1073.Google Scholar
  28. 28.
    Stewart, M. P., C. Cabanas, and N. Hogg. 1996. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J. Immunol. 156:1810–1817.Google Scholar
  29. 29.
    Gailit, J., and E. Ruoslahti. 1988. Regulation of the fibronectin receptor affinity by divalent cations. J. Biol. Chem. 263:12927–12932.Google Scholar
  30. 30.
    Lawler, J., 1986. The structural and functional properties of thrombospondin. Blood 67:1197–1209.Google Scholar
  31. 31.
    Mosher, D. F., M. Doyle, and E. A. Jaffe. 1982. Synthesis and secretion of thrombospondin by cultured endothelial cells. J. Cell. Biol. 93:343–348.Google Scholar
  32. 32.
    Clezardin, P., N. R. Hunter, J. W. Lawler, D. A. Pratt, J. L. McGregor, D. S. Pepper, and J. Dawes. 1986. Structural and immunological comparison of human thrombospondin isolated from platelets and from culture supernatants of endothelial cells and fibroblasts. Evidence for a thrombospondin polymorphism. Eur. J. Biochem. 159:569–579.Google Scholar
  33. 33.
    Giltay, J. C., H.-J. M. Brinkman, P. W. Modderman, A. E. G. Kr. von dem Borne, and J. A. van Mourik. 1989. Human vascular endothelial cells express a membrane protein complex immuno-chemically indistinguishable from the platelet VLA-2 (glycoprotein Ia–IIa) complex. Blood 73:1235–1241.Google Scholar
  34. 34.
    Pischel, K. D., H. G. Bluestein, and V. L. Woods, Jr., 1988. Platelet glycoproteins Ia, Ic and IIa are physiochemically indistinguishable from the very late activation antigens adhesion-related proteins of lymphocytes and other cell types. J. Clin. Invest. 81:505–513.Google Scholar
  35. 35.
    Edelman, G. M. 1983. Cell adhesion molecules. Science 219:450–457.Google Scholar
  36. 36.
    Hoffman, S. and G. M. Edelman. 1983. Kinetics of homophilic binding by embryonic and adult forms of the neural cell adhesion molecule. Proc. Natl. Acad. Sci U.S.A. 80:5762–5766.Google Scholar
  37. 37.
    Hanasaki, K., A. Varki, and L. D. Powell. 1995. CD22-mediated cell adhesion to cytokine-activated human endothelial cells. J. Biol. Chem. 270:7533–7542.Google Scholar
  38. 38.
    Metzelaar, M. J., J. Korteweg, J. J. Sixma, and H. K. Nieuwenhuis. 1991. Biochemical characterization of PECAM-1 (CD31 antigen) on human platelets. Thromb. Haemostasis 66:700–707.Google Scholar
  39. 39.
    Hanasaki, K., A. Varki, I. Stamenkovic, and M. P. Bevilacqua. 1994. Cytokine-induced β-galactoside α-2,6-sialyltransferase in human endothelial cells mediates α2,6-sialylation of adhesion molecules and CD22 ligands. J. Biol. Chem. 269:10637–10643.Google Scholar
  40. 40.
    Casasnovas, J. M., T. A. Springer, J.-H. Liu, S. C. Harrison, J.-H. Wang. 1997. Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature 387:312–315.Google Scholar
  41. 41.
    Klickstein, L. B., M. R. York, A. R. de Fougerolles, and T. A. Springer. 1996. Localization of the binding site on intercellular adhesion molecule-3 (ICAM-3) for lymphocyte function-associated antigen 1 (LFA-1). J. Biol. Chem. 271:23920–23927.Google Scholar
  42. 42.
    Appelmelk, B. J., I. Van Die, S. J. van Vliet, C. M. J. E. Vandenbroucke-Grauls, T. B. H. Geijtenbeek, and Y. van Kooyk. 2003. Cutting edge: Carbohydrate profiling identifies newpathogens that interact with dendritic cell-specific ICAM-3-grabbing nonin-tegrin on dendritic cells. J. Immunol. 170:1635–1639.Google Scholar
  43. 43.
    Lehmann, J. C. U., D. Jablonski-Westrich, U. Haubold, J.-C. Gutierrez-Ramos, T. Springer, and A. Hamann. 2003. Overlapping and selective roles of endothelial intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in lymphocyte trafficking. J. Immunol. 171:2588–2593.Google Scholar
  44. 44.
    Li, R., P. Nortamo, C. Kantor, P. Kovanen, T. Timonen, and C. G. Gahmberg. 1993. A leukocyte integrin binding peptide from intercellular adhesion molecule-2 stimulates T cell adhe-sion and natural killer cell activity. J. Biol. Chem. 268:21474–21477.Google Scholar
  45. 45.
    Somersalo, K., O. Carpen, E. Saksela, C. G. Gahmberg, P. Nortamo, and T. Timonen. 1995. Activation of natural killer cell migration by leukocyte integrin-binding peptide from intercellular adhesion molecule-2 (ICAM-2). J. Biol. Chem. 270:8629–8636.Google Scholar
  46. 46.
    Helander, T. S., O. Carpen, O. Turunen, P. E. Kovanen, A. Vaheri, and T. Timonen. 1995. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382:265–268.Google Scholar
  47. 47.
    Gerwin, N., J.-A. Gonzalo, C. Lloyd, A. J. Coyle, Y. Reiss, N. Banu, B. Wang, H. Xu, H. Avraham, B. Engelhardt, T. A. Springer, and J. C. Gutierrez-Ramos. 1999. Prolonged eosinophil accumulation in allergic lung interstitium of ICAM-2-deficient mice results in extended hyperresponsiveness.Immunity 10:9–19.Google Scholar
  48. 48.
    Xie, J., R. Li, P. Kotovuori, C. Vermot-Desroches, J. Wijdenes, M. A. Arnaout, P. Nortamo, and C. G. Gahmberg. 1995. Intercellular adhesion molecule-2 (CD102) binds to the leukocyte integrin CD11b/CD18 through the A domain. J. Immunol. 155:3619–3628.Google Scholar
  49. 49.
    de Fougerolles A. R., M. S. Diamond, and T. A. Springer. 1995. Heterogeneous glycosylation of ICAM-3 and lack of interaction with Mac-1 and p150,95. Eur. J. Immunol. 25:1008–1012.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2004

Authors and Affiliations

  • Kim S. C. Weber
    • 1
  • Ronen Alon
    • 2
  • Lloyd B. Klickstein
    • 3
  1. 1.Department of Medicine, Division of Rheumatology, Immunology & AllergyHarvard Medical School and Brigham & Women's HospitalBoston
  2. 2.Department of ImmunologyWeizmann InstituteRehovotIsrael
  3. 3.Sialylation of ICAM-2 on Platelets Impairs Adhesion of Leukocytes Via LFA-1 and DC-SIGN;USA

Personalised recommendations