Advertisement

Hyperfine Interactions

, Volume 156, Issue 1–4, pp 575–579 | Cite as

Investigation of Steel Surfaces Treated by a Hybrid Ion Implantation Technique

  • H. Reuther
  • E. Richter
  • F. Prokert
  • M. Ueda
  • A. F. Beloto
  • G. F. Gomes
Article

Abstract

Implantation of nitrogen ions into stainless steel in combination with oxidation often results in a decrease or even complete removal of the chromium in the nitrogen containing outermost surface layer. While iron nitrides can be formed easily by this method, due to the absence of chromium, the formation of chromium nitrides is impossible and the beneficial influence of chromium in the steel for corrosion resistance cannot be used. To overcome this problem we use the following hybrid technique. A thin chromium layer is deposited on steel and subsequently implanted with nitrogen ions. Chromium can be implanted by recoil into the steel surface and thus the formation of iron/chromium nitrides should be possible. Both beam line ion implantation and plasma immersion ion implantation are used. Due to the variation of the process parameters, different implantation profiles and different compounds are produced. The produced layers are characterized by Auger electron spectroscopy, conversion electron Mössbauer spectroscopy and X-ray diffraction. The obtained results show that due to the variation of the implantation parameters, the formation of iron/chromium nitrides can be achieved and that plasma immersion ion implantation is the most suitable technique for the enrichment of chromium in the outermost surface layer of the steel when compared to the beam line implantation.

steel ion implantation nitrides Mössbauer spectroscopy Auger electron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smidt, F. A. and Hübler, G. H., Nucl. Instrum. Methods Phys. Res. B 80/81 (1993), 207.ADSCrossRefGoogle Scholar
  2. 2.
    Richter, E., Günzel, R., Parascandola, S., Telbizova, T., Kruse, O. and Möller, W., Surf. Coat. Techn. 128/129 (2000), 21.CrossRefGoogle Scholar
  3. 3.
    Ueda, M., Berni, L. A., Castro, R. M., Beloto, A. F., Abramof, E., Rossi, J. O., Barroso, J. J. and Lepienski, C. M., Surf. Coat. Technol. 156 (2002), 71.CrossRefGoogle Scholar
  4. 4.
    Ueda, M., Berni, L.A., Gomes, G.F., Beloto, A.F., Abramof, E. and Reuther,H.,J. Appl. Phys. 86 (1999),4821.ADSCrossRefGoogle Scholar
  5. 5.
    Ueda, M., Gomes, G. F., Abramof, E. and Reuther, H., Nucl. Instrum. Methods Phys. Res. B 206 (2003), 749.ADSCrossRefGoogle Scholar
  6. 6.
    Ziegler, J. F., The Stopping and Range of Ions in Matter, Vols. 2-6, Pergamon Press, 1977-1985.Google Scholar
  7. 7.
    Longworth, G. and Hartley, N. E. W., Thin Solid Films 48 (1978), 93.CrossRefGoogle Scholar
  8. 8.
    Schaaf, P., Hyp. Interact. 111 (1998), 113.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Reuther
    • 1
  • E. Richter
    • 1
  • F. Prokert
    • 1
  • M. Ueda
    • 2
  • A. F. Beloto
    • 2
  • G. F. Gomes
    • 2
  1. 1.Forschungszentrum Rossendorf e.V., Institut für Ionenstrahlphysik und MaterialforschungDresdenGermany
  2. 2.Instituto Nacional de Pesquisas EspaciaisSao Jose dos CamposBrasil

Personalised recommendations