, Volume 527, Issue 1, pp 153–162 | Cite as

Tolerance for Prolonged Darkness of Three Phytoplankton Species, Microcystisaeruginosa (Cyanophyceae), Scenedesmusquadricauda (Chlorophyceae), and Melosiraambigua (Bacillariophyceae)

  • Eiichi Furusato
  • Takashi Asaeda
  • Jagath Manatunge


Phytoplankton community dynamics are affected not only by atural events such as overwintering but also by artificial events such as artificial circulation and related darkness conditions. In order to clarify the effect of tolerance for prolonged darkness on community succession, laboratory cultures of three phytoplankton taxa, Microcystis aeruginosa(Cyanophyceae), Scenedesmusquadricauda(Chlorophyceae), and Melosiraambigua(Bacillariophyceae) were carried out in darkness. The period of darkness was varied: 5, 10, 15, 20 days, and the control. Thereafter, all samples were reilluminated. After more than 10 days of darkness, M. aeruginosa decreased markedly with the length of the darkness period and was reduced to only 1% of the initial cell number after 20 days darkness. In contrast, S. quadricauda and M. ambigua retained their biomass even after 20 days of darkness. After restarting the light–dark cycle, however, all three species similarly increased exponentially and reached their maximum biomass levels. These results suggest that differences in tolerance for prolonged darkness may cause the succession of the phytoplankton under certain conditions.

algal bloom artificial circulation community succession darkness tolerance phytoplankton 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antia, N. J.,1976.Effects of temperature on the darkness survival of marine microplanktonic algae.Microbial Ecology 3:41–54.Google Scholar
  2. Asaeda, T. & J. Imberger,1993.Structure of bubble plumes in linearly stratified environments.Journal of Fluid Mechanics 249:35–57.Google Scholar
  3. Chapman, A. D. & L. A. Pfiester,1995.The effects of temperature,irradiance,and nitrogen on the encystment and growth of the freshwater dinoflagellates Peridinium cinctum and P. willei in culture (Dinophyceae).Journal of Phycology 31:355–359.Google Scholar
  4. Cowell, B. C.,C. J. Dawes, W. E. Gardiner & S. M. Scheda, 1987.The influence of whole lake aeration on the limnology of a hypereutrophic lake in central Florida.Hydrobiologia 148:3–24.Google Scholar
  5. Dehning, I. & M. M. Tilzer,1989.Survival of Scenedesmus acuminatus (Chlorophyceae)in darkness.Journal of Phycology 25:509–515.Google Scholar
  6. Endo, H.,H. Sansawa K. Nakajima,1977.Studies on Chlorella regularis,heterotrophic fast-growing strain.II.Mixotrophic growth in relation to light intensity and acetate condition.Plant & Cell Physiology18:199–205.Google Scholar
  7. Falconer, I. R.,M. D. Burch, D. A. Steffecsen, M. Choice & O. R. Coverdale,1994.Toxicity of the blue-green alga (cyanobac-terium)Microcystis aeruginosa in drinking water to growing pigs,as an animal model for human injury and risk assessment.Environmental Toxicology and Water Quality 9:131–139.Google Scholar
  8. Fallon, R. D. & T. D. Brock,1979.Decomposition of blue-green algae (cyanobacteria)blooms in Lake Mendota,Wisconsin.Applied and Environmental Microbiology 38:499–505.Google Scholar
  9. Fallon, R. D. & T. D. Brock,1981.Overwintering of Microcystis in Lake Mendota.Freshwater Biology 11:217–226.Google Scholar
  10. Gorham, P. R. & W. W. Carmichael,1988.Hazards of freshwater blue-green algae (Cyanobacteria).In Waaland, J. R.(ed.),Algae and Human Affairs.Cambridge University Press, Cambridge:403–431.Google Scholar
  11. Geider, R. J. & H. L. MacIntyre,1996.A dynamic model of photoadaptation in phytoplankton.Limnology and Oceanography 41:1–15.Google Scholar
  12. Gibson, C. E. & R. V. Smith,1982.Freshwater phytoplankton.In Carr, N. G. & B. A. Whitton (eds),The Biology of Cyanobacteria.Blackwell Scientific Publications, Oxford: 463–489.Google Scholar
  13. Hellebust, J. A. & J. Lewin,1977.Heterotrophic nutrition.In Werner, D.(ed.),The Biology of Diatoms.Botanical Monographs,Vol.13.University of California Press, Berkeley,California:169–197.Google Scholar
  14. Li, R.,M. Watanabe & M. Watanabe,1997.Akinate formation in plankton Anabaena spp.(cyanobacteria)by treatment with low temperature.Journal of Phycology 33:576–584.Google Scholar
  15. Lund, J. W. G.,1971 An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. Sub-arctica in an English lake.Journal of Ecology 59:521–533.Google Scholar
  16. Ogawa, T. & S. Aiba,1981.Bioenergetic analysis of mixo-trophic growth in Chlorella vulgaris and Scenedesmus acutus.Biotechnology and Bioengineering 23:1121–1132.Google Scholar
  17. Oliver, R. L. G. G. Ganf,2000.Freshwater blooms.In Whitton, B. A.M. Potts (eds),The Ecology of Cyano-bacteria.Kluwer Academic Publishers, Dordrecht:149–194.Google Scholar
  18. Patterson, J. C. & J. Imberger,1989.Simulation of bubble plume destratification systems in reservoirs.Aquatic Science 51:3–18.Google Scholar
  19. Rengefors, K. & D. M. Anderson,1998.Environmental and endogenous regulation of cyst germination in two freshwater dinoflagellates.Journal of Phycology 34:568–577.Google Scholar
  20. Reynolds, C. S.,1994.The ecological basis for the successful biomanipulation of aquatic communities.Archiv fu ¨r Hydrobiologie 130:1–33.Google Scholar
  21. Reynolds, C. S.,1997.Vegetation Processes in the Pelagic: a Model for Ecosystem Theory.Ecology Institute, Oldendorf/Luhe,329 pp.Google Scholar
  22. Reynolds, C. S.,S. W. Wiseman & M. J. O. Clarke,1984.Growth-and loss-rate response of phytoplankton to intermittent arti cial mixing and their potential application to the control of planktonic algal biomass.Journal of Applied Ecology 21:11–39.Google Scholar
  23. Rother, J. A. & P. Fay,1977.Sporulation and the development of planktonic blue-green algae in two Salopian meres.Proceedings of the Royal Society of London,Series B: Biological Science 196:317–332.Google Scholar
  24. Schladow, S. G. & I. H. Fisher,1995.The physical response of temperate lakes to artificial destratification.Limnology and Oceanography 40:359–373.Google Scholar
  25. Shapiro, J.,1990.Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verhandlungen.Internationale Vereinigung fur theoretische und angewandte Limnologie 24:38–54.Google Scholar
  26. Sicko-Goad, L.,E. F. Stoermer & J. P. Kociolek,1989.Diatom resting cell rejuvenation and formation:time course,species records and distribution,Journal of Plankton Research 11: 375–389.Google Scholar
  27. Smayda, T. J. & B. Mitchell-Innes,1974.Dark survival of autotrophic planktonic marine diatom.Marine Biology 25: 195–202.Google Scholar
  28. Strickland, J. D. & T. R. Parsons,1968.A Practical Handbook of Seawater Analysis.Bulletin 167.Fisheries Research Board of Canada,310 pp.Google Scholar
  29. Takamura, N.,M. Yasuno & K. Sugahara,1984.Overwintering of Microcystis aeruginosa Ku ¨ a shallow lake.Journal of Plankton Research 6:1019–1028.Google Scholar
  30. Tilzer, M. M.,H. W. Paerl & C. R. Goldman,1977.Sustained viability of aphotic phytoplankton in Lake Tahoe (Califor-nia-Nevada).Limnology and Oceanography 22:84–91.Google Scholar
  31. Toetz, D. W.,1981.Effects of whole lake mixing on water quality and phytoplankton.Water Research 15:1205–1210.Google Scholar
  32. Tsujimura, S.,H. Tsukada, H. Nakahara, T. Nakajima & M. Nishino,2000.Seasonal variations of Microcystis popula-tions in sediments of Lake Biwa,Japan.Hydrobiologia 434: 183–192.Google Scholar
  33. Visser, M. P.,W. B. Ibelings, B. Van der Veer, J. Koedood & R. L. Mur,1996a.Artificial mixing prevents nuisance blooms of the cyanobacterium Microcystis in Lake Nieuwe Meer,the Netherlands.Freshwater Biology 36:435–450.Google Scholar
  34. Visser, M. P.,L. Massaut, J. Huisman & L. R. Mur,1996b. Sedimentation losses of Scenedesmus in relation to mixing depth.Archiv fuer Hydrobiologie 136:289–308.Google Scholar
  35. Watanabe, M.M.,M. Kawachi, M. Hiroki, F. Kasai,2000.NIES-Collection,List of Strains,sixth edition 2000,Micro-algae and Protozoa.National Institute for Environmental Studies. Ibaraki,159 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Eiichi Furusato
    • 1
  • Takashi Asaeda
    • 2
  • Jagath Manatunge
    • 2
  1. 1.Environmental Hydraulic Institute Ltd.SaitamaJapan; Tel./Fax:
  2. 2.Department of Environmental Science & Human EngineeringSaitama UniversityJapan; E-mail:

Personalised recommendations