, Volume 527, Issue 1, pp 125–137 | Cite as

The Influence of the Chemical Composition of Typha Domingensis and Nymphaea Ampla Detritus on Invertebrate Colonization During Decomposition in a Brazilian Coastal Lagoon

  • J.F. GonçalvesJr.
  • A.M. Santos
  • F.A. Esteves


The aims of this study were to investigate the structure and composition of the invertebrate community during the detritus decomposition (colonization features) of the two most abundant aquatic macrophytes Typha domingensis Pers. and Nymphaea ampla in Jurubatiba Lagoon and verify if the chemical composition of the substratum has any influence on invertebrate colonization and which are the functional groups possibly affected by these compounds. The substratum T. domingensis had higher percentages of cell wall fraction (F= 108.33; p < 0.0001) and organic matter (F= 225.77; p < 0.0001), while nitrogen (F= 408.61; p < 0.0001) and phosphorus (F= 224.59; p < 0.0001) contents were higher in N. ampla. These differences in the chemical composition of the substrata influenced the decomposition rate, and the detritus of N. ampla(4.37% DW day−1) decomposed approximately 26 times faster than the T. domingensis(0.17% DW day−1) detritus. The main groups of invertebrates that colonized both substrate were Chironomidae, with more than 50% of the total, followed by Oligochaeta, Nematoda, Copepoda and Cladocera. The results showed that the slow breakdown rate of T. domingensis detritus provided a higher probability for colonization and that the main driving force structuring the invertebrates' community was degradative ecological succession (DES).

breakdown substrate colonization aquatic macrophyte associated fauna degradative ecological succession 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, S. E.,H. M. Grimshaw, J. A. Parkinson & C. Quarmby, 1974.Chemical Analysis of Ecological Materials.Blackwell Scientific Publication, Oxford,565 pp.Google Scholar
  2. Begon, M.,J. L. Harper & C. R. Townsend,1996.ECOLOGIA-Individuals,Populations and Communities,3rd ed., Blackwell Science, London,1068 pp.Google Scholar
  3. Bianchini Jr., I. & A. P. P. Toledo,1996.FrEstudo da mineral-izaçãode Eleocharis mutata.VII Seminário Regional de Ecologia 7:57–72.Google Scholar
  4. Botts, P. S.,1997.Spatial pattern,patch dynamics and successional change:Chironomidae assemblages in a Lake Erie coastal wetland.Freshwater Biology 37:277–286.Google Scholar
  5. Boyd, C. E. & C. P. Goodyear,1971.Nutritive quality food in ecological systems.Archiev fu ¨r Hidrobiologie 69(2):256–270.Google Scholar
  6. Brum, P. R. & F. A. Esteves,2001a.Dry weight loss and chemical changes in the detritus of three tropical aquatic macrophyte species (Eleocharis interstincta,Nymphea ampla and Potamogeton stenostachys)during decomposition.Acta Limnologica Brasiliensis 13(1):61–73.Google Scholar
  7. Brum, P. R. & F. A. Esteves,2001b.Changes in abundance and biomass of the attached bacterial community throughout the decomposition of three species of aquatic macrophytes.Oecologia Brasiliensis 9:77–96.Google Scholar
  8. Brum, P. R.,V. F. Farjalla, J. F. Gonçalves Jr., A. M. San-tos, M. T. Porto, E. D. R. Vieira, F. M. Ferreira & I. Bianchini Jr.,1999.Aspects of the uptake of dissolved oxygen of the Jurubatiba and Imboassica Lagoons (Macaé-RJ).Brazilian Archives of Biology and Technology 42(4):433–440.Google Scholar
  9. Cornelissen, J. H. C.,1996.An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types.Journal of Ecology 84:573–582.Google Scholar
  10. Dufrêne, M. & P. Legendre,1997.Species assemblages and indicator species:the need for a flexible asymmetrical approach.Ecological Monographs 67(3):345–366.Google Scholar
  11. Dvorák, J.,1996.An example of relationships between mac-rophytes,macroinvertebrates and their food resources in a shallow Euthrophic lake.Hydrobiologia 339:27–36.Google Scholar
  12. Dvorák, J. & E. P. H. Best,1982.Macro-invertebrate communities associated with macrophytes of Lake Vechten: structural and functional relationships.Hydrobiologia 95: 115–126.Google Scholar
  13. Esteves, F. A.,1996.Fundamentos de limnologia.2nd edn.Editor Interciência:FINEP, Rio de Janeiro,575 pp.Google Scholar
  14. Fassbender, H. W.,1973.Simultane P-Bestimmung im N-Kjeldahl-aufschlu von Bodenproben.Die Phosphorsäure 30:44–53.Google Scholar
  15. Folch, J.,M. Lee, & G. H. Sloanestanley,1957.A simple method for isolation and purification of total lipids from animal tissue.Journal of Biology and Chemistry 226:497–509.Google Scholar
  16. Farjalla, V. F.,C. C. Marinho & F. A. Esteves,2001.Uptake of oxygen in the initial stages of decomposition of aquatic macrophytes and detritus from terrestrial vegetation in a tropical coastal lagoon.Acta Limnologica Brasiliensia 11(2): 185–193.Google Scholar
  17. Furtado, A.,1994.Contribuição das macrótas aquáticas T.domingensis (TYPHACEAE)e Eleocharis cf.stulosa (CYPERACEAE)para o estoque de nutrientes e energia na lagoa Imboacica (Macaé-RJ).Dissertation of Master, Department of Ecology,UFRJ,104 pp.Google Scholar
  18. Gessner, M. O.,E. Chauvet & M. Dobson,1999.A Perspective on leaf litter breakdown in stream.Oikos 85:377–384.Google Scholar
  19. Glowacka, I.,G. J. Soszka & H. Soszka,1976.Invertebrates associated with macrophytes.In Pieczyrska, E.(ed.),Selected Problems of Lake Littoral Ecology.University of Warsaw, Warsaw:97–122.Google Scholar
  20. Gonçalves Jr., J. F.,F. A. Esteves, & M. Callisto,2000.Succession and diversity of Chironomidae in detritus of Typha domingensis in a coastal lagoon (Parque Nacional da Restinga de Jurubratiba,State of Rio de Janeiro,Brazil).Internationale Vereinigung fu ¨r Theoretische und Angewandte Limnologie 27:2374–2377.Google Scholar
  21. Gonçalves,Jr., J. F.,F. A. Esteves & M. Callisto,2003.Chironomids colonization in Nymphaea ampla L.detritus during a degradative ecological successional experiment in a Brazilian coastal lagoon.Acta Limnologica Brasiliensia 15(2): 21–27.Google Scholar
  22. Heard, S. B. & J. S. Richardson,1995.Shredder-collector facilitation in streams detrital food webs:is there enough evidence?Oikos 72:359–366.Google Scholar
  23. Hieber, M. & M. O. Gessner,2002.Contribution of stream detritivores,fungi and bacteria to leaf breakdown based on biomass estimates.Ecology 83(4):1026–1038.Google Scholar
  24. Hutchens, J. J. & J. B. Wallace,2002.Ecosystem linkage between southern Appalachian headwater streams and their banks:leaf litter breakdown and invertebrate assemblages.Ecosystems 5:80–91.Google Scholar
  25. Irons, J. G.,M. W. Oswood, R. J. Stout & C. M. Pringle,1994.Latitudinal patterns in leaf litter breakdown:is temperature really important?Freshwater Biology 32:401–411.Google Scholar
  26. Kaushik, N. K. & H. B. N. Hynes,1971.the fate of the dead leaves that fall into streams.Archieve fu ¨r Hydrobiologie 68(4):465–515.Google Scholar
  27. Knoppers, B.,1994.Aquatic primary production in coastal lagoons.In Kjerfve, B.(ed.),Coastal Lagoon Processes,vol. 60.Elsevier Oceanography Series, Amsterdam:243–286.Google Scholar
  28. Krebs, C. J.,1998.Ecological Methodology,2nd edn.Addison Wesley Longman, New York,620 pp.Google Scholar
  29. Lester, P. J.,S. F. Mitchell & D. Scott,1996.Substrate and shade:mechanisms of willow tree in.uence on the macro-invertebrates community of Heeney Creek,South Island, New Zealand.Archiev fu ¨r Hydrobiologie136(2):145–158.Google Scholar
  30. Magurran, A. E.,1991.Ecological Diversity and its Measurement.Chapman & Hall, London,178 pp.Google Scholar
  31. Malmqvist, B.,1993.Interactions in stream leaf packs: effects of a stonefly predator on detritivores and organic matter processing.Oikos 66:454–462.Google Scholar
  32. Mathuriau, C. & E. Chauvet,2002.Breakdown of leaf litter in a neotropical stream.Journal of the North American Benthological Society 21(3):384–396.Google Scholar
  33. Merritt, R. W. & K. W. Cummins,1996.An Introduction to Aquatic Insects of North America,3rd edn.Kendall/Hunt Publishing Company, Iowa (USA),862 pp.Google Scholar
  34. Nessimian, J. L. & I. H. A. G. de Lima,1997. EsColonizaçãode três espécies de macrótas por macroinvertebrados aquáti–cos em um brejo no litoral do Estado do Rio de Janeiro.Acta Limnologica Brasiliensia 9:149–163.Google Scholar
  35. Nogueira, F. & F. A. Esteves,1993.Changes in nutritional value of Scirpus cubensis during growth and decomposition.International Journal of Ecology and Environmental Science 19:205–212.Google Scholar
  36. Oerti, B.,1993.Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland).Oecologia 96:466–477.Google Scholar
  37. Palma-Silva, C.,1998.EsCrescimento e produçãode Typha domingensis Pers na Lagoa Imboassica.In:Esteves, F. A.(ed.), Ecologia das lagoas costeiras do Parque Nacional da Restinga de Jurubatiba e do Município de Macaé(RJ),NUPEM, Macaé,205–220.Google Scholar
  38. Petersen,Jr. R. C.,K. W. Cummins & G. M. Ward,1989.Microbial and animal processing of detritus in a woodland streams.Ecological Monographs 59(1):21–39.Google Scholar
  39. Pomogyi, P.,E. P. H. Best, J. H. A. Dassen & J. J. Boon,1984.On the relation between age,plant composition and nutrient release from living and killed Ceratophyllum plants.Aquatic Botany 19:243–250.Google Scholar
  40. Rosemond, A. D.,C. M. Pringle & A. Ramirez,1998.Macroconsumer effects on insect detritivores and detritus processing in tropical stream.Freshwater Biology 39:515–523.Google Scholar
  41. Rosine, W. N.,1955.The distribution of invertebrates on submerged aquatic plant surfaces in Uskee Lake,Colorado.Ecology 36(2):308–314.Google Scholar
  42. Ruetz, C. R.,R. M. Newman & B. Vondracek,2002.Top-down control in a detritus-based food web: fish,shredders,and leaf breakdown.Oecologia 132:307–315.Google Scholar
  43. Santos, A. M. & F. A. Esteves,2002.Primary production and mortality of Eleocharis interstincta in response to water level fluctuations.Aquatic Botany 74(3):189–199.Google Scholar
  44. Saunders, G. W.,1975.Decomposition in freshwater.In Anderson, J. M.and MAcfayden (ed.),The role of terrestrial and aquatic organisms in decomposition processes. 17° Symposium of British Ecological Society,Blackwell Scientific Publications, New York:341–373.Google Scholar
  45. Smock, L. A. & D. L. Stoneburner,1980.The response of macroinvertebrates to aquatic macrophyte decomposition.Oikos 35:397–403.Google Scholar
  46. Stripari, N. L. & R. Henry,2002.The invertebrate colonization during decomposition of Echhornia azurea Kunth.In a lateral lake in the mouth zone of Paranapanema river into Jurumirim reservoir (São Paulo,Brazil).Brazilian Journal of Biology 62(2):293–310.Google Scholar
  47. Tanaka, Y.,1991.Microbial decomposition of reed (Phragmites communis )leaves in a saline lake.Hydrobiologia 220:119–129.Google Scholar
  48. Ter Braak, C. J. F.,1986.Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis.Ecology 67(5):1167–1179.Google Scholar
  49. Walker, I.,1986.EsSobre a ecologia e biologia da decomposição da matéria orgânica em águas amazônicas.Acta Limnolog-ica Brasiliensia 1:557–573.Google Scholar
  50. Wetzel, R. G.,1993.Limnología.Fundação Calouste Gul-benkain, Lisboa,919 pp.Google Scholar
  51. Whiles, M. R. & J. B. Wallace,1997.Leaf litter decomposition and macroinvertebrates communities in headwater streams draining pine and hardwood catchments.Hydrobiologia 353:107–119.Google Scholar
  52. Wise, D. H. & M. C. Molles Jr.,1979.Colonization of arti cial substrates by stream insect:inuence of substrate size and diversity.Hydrobiologia 65(I):69–74.Google Scholar
  53. Wollheim, W. M. & J. R. Lovvorn,1996.Effects of macrophyte growth forms on invertebrates communities in saline lakes of the Wyoming High Plains.Hydrobiologia 323:83–96.Google Scholar
  54. Zozaya, I. Y. B. & J. J. Neiff,1991.Decomposition and colonization by invertebrates of Typha latifolia L. litter in Chaco cattail swamp (Argentina).Aquatic Botany 40:185–193.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.F. GonçalvesJr.
    • 1
    • 2
  • A.M. Santos
    • 1
  • F.A. Esteves
    • 2
  1. 1.Department of Ecology, Laboratory of Limnology, Biology InstituteFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Department of General Biology, Benthic Ecology LaboratoryFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations