Hydrobiologia

, Volume 527, Issue 1, pp 35–47 | Cite as

Ecosystem Processes Performed by Unionid Mussels in Stream Mesocosms: Species Roles and Effects of Abundance

  • Caryn C. Vaughn
  • Keith B. Gido
  • Daniel E. Spooner
Article

Abstract

Unionid mussels are a guild of freshwater, sedentary filter-feeders experiencing a global decline in both species richness and abundance. To predict how these losses may impact stream ecosystems we need to quantify the effects of both overall mussel biomass and individual species on ecosystem processes. In this study we begin addressing these fundamental questions by comparing rates of ecosystem processes for two common mussel species, Amblema plicata and Actinonaias ligamentina, across a range of abundance levels and at two trophic states (low and high productivity) in stream mesocosms. At both low and high productivity, community respiration, water column ammonia, nitrate, and phosphorus concentrations, and algal clearance rates were all linearly related to overall mussel biomass. After removing the effects of biomass with ANCOVA, we found few differences between species. In a separate series of experiments, nutrient excretion (phosphorus, ammonia, and molar N:P) and biodeposition rates were only marginally different between species. For the species studied here, functional effects of unionids in streams were similar between species and linearly related to biomass, indicating the potential for strong effects when overall mussel biomass is high and hydrologic residence times are long.

ecosystem processes unionidae species roles biomass clearance rates nutrient excretion biodeposition stream mesocosms stream mussels bivales nutrient cycling functional redundancy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alimov, A. F., 1975. The rate of metabolism of freshwater bivalve molluscs. Soviet Journal of Ecology 6: 6–13.Google Scholar
  2. American Public Health Association, 1995. Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington, DC.Google Scholar
  3. Arnott, D. L. & M. J. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha )in the western basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53: 646–659.Google Scholar
  4. Baker, S. M. & D. J. Hornbach, 2001. Seasonal metabolism and biochemical composition of two unionid mussels, Actinonaias ligamentina and Amblema plicata. Journal of Molluscan Studies 67: 407–416.Google Scholar
  5. Bogan, A. E., 1993. Freshwater bivalve extinctions (Mollusca: Unionidae): a search for causes. American Zoologist 33: 599–609.Google Scholar
  6. Bronmark, C. & B. Malmqvist, 1982. Resource partitioning between unionid mussels in a Swedish lake outlet. Holarctic Ecology 5: 389–395.Google Scholar
  7. Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.Google Scholar
  8. Cardinale, J. B., K. Nelson & M. A. Palmer, 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.Google Scholar
  9. Cardinale, B. J., M. A. Palmer & S. L. Collins, 2002. Species diversity enhances ecosystem functioning through interspeci c facilitation. Nature 415: 426–429.Google Scholar
  10. Carlton, J. T., J. K. Thompson, L. E. Schemel & F. H. Nichols, 1990. Remarkable invasion of San Francisco Bay (California, USA)by the Asian clam Potamocorbula amurensis. I.Introduction and dispersal. Marine Ecology Progress Series 66: 81–94.Google Scholar
  11. Cohen, R. R. H., P. V. Dresler, E. P. J. Phillips & R. L. Cory, 1984. The e. ect of the Asiatic clam, Corbicula. uminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.Google Scholar
  12. Coughlan, J., 1969. The estimation of ltering rate from the clearance of suspension. Marine Biology 2: 356–358.Google Scholar
  13. Dame, R. F., 1996. Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, New York.Google Scholar
  14. Davis, W. R., A. D. Christian & D. J. Berg, 2000. Nitrogen and phosphorus cycling by freshwater mussels in a headwater stream ecosystem. In Tankersley, R. A., D. I. Warmolts, G. T. Watters, B. J. Armitage, P. D. Johnson & R. S. Butler (eds), Freshwater Mollusk Symposium Proceedings: Part II, Musseling in on Biodiversity. Ohio Biological Survey Special Publication, Columbus, Ohio: 141–151.Google Scholar
  15. DiDonato, G. T., 1998. An experimental investigation of interactions between two freshwater mussels, Elliptio waccamawensis and Leptodea ochracea, in Lake Waccamaw, North Carolina: e. ects of scale and environment. Ph. D. Dissertation. University of North Carolina, Chapel Hill, North Carolina.Google Scholar
  16. Dietz, T. H., 1985. Ionic regulation in freshwater mussels: a brief review. American Malacological Bulletin 2: 233–242.Google Scholar
  17. Gido, K. B. & W. J. Matthews, 2000. Ecosystem e. ects of water column minnows in experimental streams. Oecologia 126: 247–253.Google Scholar
  18. Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter cycling in a sandy stream. Oecologia 119: 445–451.Google Scholar
  19. Hakenkamp, C. C., S. G. Ribblett, M. A. Palmer, C. M. Swan, J. W. Reid & M. R. Goodison, 2001. The impact of an introduced bivalve (Corbicula. uminea )on the benthos of a sandy stream. Freshwater Biology 46: 491–501.Google Scholar
  20. Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive e. ects of. ow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.Google Scholar
  21. Heubner, J. D., 1982. Seasonal variation in two species of unionid clams from Manitoba, Canada: Respiration. Canadian Journal of Zoology 60: 650–654.Google Scholar
  22. Holland-Bartels, L. E., 1990. Physical factors and their in. uence on the mussel fauna of a main channel border habitat of the upper Mississippi River. Journal of the North American Benthological Society 9: 327–335.Google Scholar
  23. Iglesias, J. I. P., M. B. Urrutia, E. Navarro & I. Ibarrola, 1998. Measuring feeding and absorption in suspension-feeding bivalves: an appraisal of the biodeposition method. Journal of Marine Biology and Ecology 219: 71–86.Google Scholar
  24. James, M. R., 1987. Ecology of the freshwater mussel Hydridella mensiesi (Gray)in a small oligotrophic lake. Archiv für Hydrobiologie 108: 337–348.Google Scholar
  25. Jaramillo, E., C. Bertran & A. Bravo, 1992. Mussel biodeposition in an estuary in southern Chile. Marine Ecology Progress Series 82: 85–94.Google Scholar
  26. Jonsson, M. & B. Malmqvist, 2000. Ecosystem process rate increases with animal species richness. Oikos 89: 519–523.Google Scholar
  27. Kat, P. W., 1984. Parasitism and the Unionaceae (Bivalvia). Biological Review 59: 189–207.Google Scholar
  28. Kryger, J. & H. H. Riisgård, 1988. Filtration rate capacities in six species of European freshwater bivalves. Oecologia 77: 34–38.Google Scholar
  29. Lamberti, G. A. & A. D. Steinman, 1993. Research in arti cial streams: applications, uses and abuses. Journal of the North American Benthological Society 12: 313–384.Google Scholar
  30. Lauritsen, D. D. & S. C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula. uminea. Journal of the North American Benthological Society 8: 134–139.Google Scholar
  31. Layzer, J. B., M. E. Gordon & R. M. Anderson, 1993. Mussels: the forgotten fauna of regulated rivers: a case study of the Caney Fork River. Regulated Rivers: Research and Management 8: 63–71.Google Scholar
  32. Lei, J., B. S. Payne & S. Y. Wang, 1996. Filtration dynamics of the zebra mussel, Dreissen polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 53: 29–37.Google Scholar
  33. MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.Google Scholar
  34. Master, L. L. & S. R. Flack (eds), 1998. Rivers of Life: Critical Watersheds for Protecting Freshwater Biodiversity. The Nature Conservancy, Arlington, VA.Google Scholar
  35. Matiso., G., Fisher, J. G. & S. Matis, 1985. Effect of Microinvertebrates on the Exchange of Solutes between Sediments and Freshwater. Hydrobiologia 122: 19–33.Google Scholar
  36. McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classi cation of North American Freshwater Invertebrates, 2nd edn.Academic Press, New York: 331–429.Google Scholar
  37. Mellina, E., J. B. Rasmussen & E. L. Mills, 1995. Impact of zebra mussel (Dreissena polymorpha )on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573.Google Scholar
  38. Nalepa, T. F., W. S. Gardner & J. M. Malczyk, 1991. Phosphorus cycling by mussels (Unionidae: Bivalvia)in Lake St. Clair. Hydrobiologia 219: 230–250.Google Scholar
  39. Navarro, J. M. & R. J. Thompson, 1997. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn)during the spring diatom bloom. Journal of Experimental Marine Biology and Ecology 209: 1–13.Google Scholar
  40. Negus, C., 1966. A quantitative study of the growth and production of unionid mussels in the River Thames at Reading. Journal of Animal Ecology 35: 513–532.Google Scholar
  41. Neves, R. J., A. E. Bogan, J. Williams, S. A. Ahlstedt & P. W. Hart eld, 1997. Status of the aquatic mollusks in the southeastern United States: a downward spiral of diversity.In Benz, G. W. & D. E. Collins (eds), Aquatic Fauna in Peril: The Southeastern Perspective. Special Publication 1, Southeast Aquatic Research Institute: 43–86.Google Scholar
  42. Nichols, F. H. & D. Garling. 2000. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids. Canadian Journal of Zoology 78: 871–882.Google Scholar
  43. Nichols, F. H., J. K. Thompson & L. E. Schemel, 1990. Remarkable invasion of San Francisco Bay (California, USA)by the Asian clam Potamocorbula amurensis. II. Displacement of a former community. Marine Ecology Progress Series 66: 95–101.Google Scholar
  44. Parmalee, P. W. & A. E. Bogan, 1998. The Freshwater Mussels of Tennessee. University of Tennessee Press, Knoxville. Paterson, C. G., 1984. A technique for determining apparent selective ltration in the freshwater bivalve Elliptio complanata (Lightfoot). Veliger 27: 238–241.Google Scholar
  45. Payne, B. S., J. Lei, A. C. Miller & E. D. Hubertz, 1995. Adaptive variation in palp and gill size of the zebra mussel (Dreissena polymorpha )and Asian clam (Corbicula. uminea ). Canadian Journal of Fisheries and Aquatic Sciences 52: 1130–1134.Google Scholar
  46. Phelps, H. L., 1994. The Asiatic clam (Corbicula. uminea ): invasion and system-level ecological change in the Potomac River estuary near Washington, DC. Estuaries 17: 614–621.Google Scholar
  47. Potts, W. T. W., 1954. The rate of urine production of Anodonta cygnaea. Journal of Experimental Biology 31: 614–617.Google Scholar
  48. Raikow, D. F. & S. K. Hamilton, 2000. Bivalve diets in a midwestern US stream: a stable isotope enrichment study. Limnology and Oceanography 46: 514–522.Google Scholar
  49. Roditi, H. A., D. L. Strayer & S. E. G. Findlay, 1997. Characteristics of zebra mussel (Dreissena polymorpha )biodeposits in a tidal freshwater estuary. Archiv für Hydrobiologie 140: 207–219.Google Scholar
  50. Scheiner, S. M. & J. Gurevitch, 1993. Design and Analysis of Ecological Experiments. Chapman and Hall, New York.Google Scholar
  51. Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorous excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography 42: 1386–1397Google Scholar
  52. Silverman, H., E. C. Achberger, J. W. Lynn & T. H. Dietz, 1995. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula. uminea, and Carunculina texasensis. Biological Bulletin 189: 308–319.Google Scholar
  53. Silverman, H., S. J. Nichols, J. S. Cherry, E. Archberger, J. W. Lynn & T. H. Dietz, 1997. Clearance of laboratory-cultured bacteria by freshwater bivalves: differences between lentic and lotic unionids. Canadian Journal of Zoology 75: 1857–1866Google Scholar
  54. Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd edn. W. H. Freeman Co.Google Scholar
  55. Spooner, D. E., 2002. A eld experiment examining the e. ects of freshwater mussels (Unionidae)on sediment ecosystem function. M. S. Thesis, University of Oklahoma, Norman.Google Scholar
  56. Stewart, T. W., J. G. Miner & R. L. Lowe. 1998. Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat. Journal of the North American Benthological Society 17: 81–94.Google Scholar
  57. Strayer, D. L., 1981. Notes on the microhabitats of unionid mussels in some Michigan streams. American Midland Naturalist 106: 411–415.Google Scholar
  58. Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.Google Scholar
  59. Strayer, D. L. & J. Ralley, 1993. Microhabitat use by an assemblage of stream-dwelling unionaceans (Bivalvia), including two rare species of Alasmidonta. Journal of the North American Benthological Society 12: 247–258.Google Scholar
  60. Strayer, D. L., D. C. Hunter, L. C. Smith & C. K. Borg, 1994. Distribution, abundance, and roles of freshwater clams (Bivalvia, Unionidae)in the freshwater tidal Hudson River. Freshwater Biology 31: 239–248.Google Scholar
  61. Strayer, D. L., N. F. Caraco, J. F. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves. BioScience 49: 19–27.Google Scholar
  62. Vanderploeg, H., L. Liebig, W. Carmichael, M. Agy, T. Johengen, G. Fahnenstiel & T. Nalepa, 2001. Zebra mussel (Dreissena polymorpha )selective ltration promoted toxic Microcystis blooms in Saginaw Bary (Lake Huron)and Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 58: 1208–1221.Google Scholar
  63. Vaughn, C. C., 1997. Regional patterns of mussel species distributions in North American rivers. Ecography 20: 107–115.Google Scholar
  64. Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.Google Scholar
  65. Vaughn, C. C. & M. Pyron, 1995. Population ecology of the endangered Ouachita Rock Pocketbook Mussel, Arkansia wheeleri (Bivalvia: Unionidae), in the Kiamichi River, Oklahoma. American Malacological Bulletin 11: 145–151.Google Scholar
  66. Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.Google Scholar
  67. Vaughn, C. C. & C. M. Taylor, 2000. Macroecology of a hostparasite relationship. Ecography 23: 11–20.Google Scholar
  68. Vaughn, C. C., C. M. Mather, M. Pyron, P. Mehlhop & E. K. Miller, 1996. The current and historical mussel fauna of the Kiamichi River, Oklahoma. Southwestern Naturalist 41: 325–328.Google Scholar
  69. Vaughn, C. C., C. M. Taylor & K. J. Eberhard, 1997. A comparison of the e. ectiveness of timed searches vs. quadrat sampling in mussel surveys. In Cummings, K. S., A. C. Buchanan, C. A. Mayer & T. J. Naimo (eds), Conservation and Management of Freshwater Mussels II: Initiatives for the Future. Proceedings of a UMRCC Symposium, 16-18 October 1995, St. Louis, Missouri. Upper Mississippi River Conservation Committee, Rock Island, Illinois: 157–162.Google Scholar
  70. Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers?-a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.Google Scholar
  71. Wellnitz, T. & N. L. Po., 2001. Functional redundancy in heterogenous environments: implications for conservation. Ecology Letters 4: 177–179.Google Scholar
  72. Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, New York.Google Scholar
  73. Williams, C. J. & R. F. McMahon, 1989. Annual variation of tissue biomass and carbon and nitrogen content in the freshwater bivalve, Corbicula. uminea, relative to downstream dispersal. Canadian Journal of Zoology 67: 82–90.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Caryn C. Vaughn
    • 1
  • Keith B. Gido
    • 1
    • 2
  • Daniel E. Spooner
    • 1
  1. 1.Oklahoma Biological Survey and Department of ZoologyUniversity of OklahomaNormanUSA (Tel.:
  2. 2.Division of BiologyKansas State UniversityManhattenUSA

Personalised recommendations