Hydrobiologia

, Volume 526, Issue 1, pp 33–42 | Cite as

Low Genotypic Diversity in a Daphnia Pulex Population in a Biomanipulated Lake: The Lack of Vertical and Seasonal Variability

  • Marco Matthes
Article

Abstract

Allozyme diversity of a population of D. pulex was studied over two seasons in a small lake (Gräfenhain, Saxony, Germany). In this eutrophic lake, accumulation of hydrogen sulfide during winter ice covers leads to an annual killing-off of cladocerans. Hence, the population must be re-established every year by hatchlings from sexual eggs. The absence of planktivorous fish due to strong biomanipulation ensures high abundances of Daphnia from June until September. Besides the investigation of seasonal changes of genotype diversity, vertical differences between individuals from the epilimnion and from a deep chlorophyll maximum (DCM) were studied. Specimens were classified by allozyme electrophoresis using six allozyme loci. Except for aldehyde oxidase (AO) all tested allozyme loci were monomorphic. Two alleles were found at the AO-locus in the overall study, allowing the population to be subdivided into three clonegroups (ss, fs, ff). The proportion of each clonegroup both in the epilimnion and in the DCM did not vary over the two seasons and no differences were found in the year-to-year comparison. Although two completely different habitats (epilimnion, DCM) were found to be used by D. pulex, clonal structure in both depth strata was similar at all times indicating no intraspecific segregation of the population. In spite of a non-permanent population with periodical sexual reproduction, a constant deviation from Hardy-Weinberg-equilibrium was detected in the overall study. This remarkable genetic structure is interpreted to be the result of both founder effects and a strong and long-lasting selection pressure caused by 15 years of stationary conditions due to intense biomanipulation.

allozyme electrophoresis biomanipulation deep chlorophyll maximum clonal selection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachiorri, A., V. Rossi & P. Menozi, 1991. Enzymatic variability of a colonizing population of Daphnia obtusa Kurz (Crustacea, Cladocera). Verh. int. Ver. Limnol. 24: 2813-2815.Google Scholar
  2. Benndorf, J., H. Kneschke, K. Kossatz & E. Penz, 1984. Manipulation of the pelagic food web by stocking with predaceous shes. Internationale Revue Der Gesamten Hydrobiologie 69: 407-428.Google Scholar
  3. Benndorf, J., B. Wissel, A. F. Sell, U. Hornig, P. Ritter & W. Bö ing, 2000. Food web manipulation by extreme enhancement of piscivory: an invertaberate predator compensates for the effects of planktivorous sh on a plankton community. Limnologica 30: 235-245.Google Scholar
  4. Cerny, M. & P. D. N. Hebert, 1999. Intercontinental allozyme differentiation among four holarctic Daphnia species. Limnology and Oceanography 44: 1381-1387.Google Scholar
  5. Crease, T. J., S. K. Lee, S. L. Yu, K. Spitze, N. Lehman & M. Lynch, 1997. Allozyme and mtDNA variation in populations of the Daphnia pulex complex from both sides of the Rocky Mountains. Heredity 79: 242-251.Google Scholar
  6. Davison, J., 1969. Activation of the ephippial eggs of Daphnia pulex. Journal of Genetic Physiology 53: 565-575.Google Scholar
  7. De Meester, L., 1996. Local genetic differentiation and adaptation in freshwater zooplankton populations: patterns and processes. Ecoscience 3: 385-399.Google Scholar
  8. De Meester, L. & L. J. Weider, 1999. Depth selection behavior, sh kairomones, and the life histories of Daphnia hyalina X galeata hybrid clones. Limnology and Oceanography 44: 1248-1258.Google Scholar
  9. Epp, G. T., 1996. Clonal variation in the survival and reproduction of Daphnia pulicaria under low-food stress. Freshwater Biology 35: 1-10.Google Scholar
  10. Flöβ ner, D., 2000. Die Haplopoda und Cladocera Mitteleuropas. Backhuys Publishers, Leiden, p. 428.Google Scholar
  11. Haney, J. F. & D. J. Hall, 1975. Sugar coated Daphnia: A preservation technique for Cladocera. Limnology and Oceanography 18: 331-333.Google Scholar
  12. Hebert, P. D. N., 1987. Genetics of Daphnia. In Peters, R. H. & R. de Bernardi (eds), Daphnia. Istituto Italiano di Idrobiologia, Pallanza: 439-460.Google Scholar
  13. Hebert, P. D. N. & M. J. Beaton, 1989. Methodologies for allozyme analysis using cellulose acetate electrophoresis. Helena Laboratories, Beaumont, Texas, p. 32.Google Scholar
  14. Hebert, P. D. N., S. S. Schwartz & J. Hrbacek, 1989. Patterns of genotypic diversity in Czechoslovakian Daphnia. Heredity 62: 207-216.Google Scholar
  15. Herbert, M. R., 1954. The tolerance of oxygen deficiency in the water by certain cladocera. Memorie dell 'Istituto Italiano di Idrobiologia 9: 97-107.Google Scholar
  16. Hobaek, A. & P. Larsson, 1990. Sex determination in Daphnia magna. Ecology 71: 2255-2268.Google Scholar
  17. Hoffmann, A. A., 1995. Ecological population genetics: the interface between genes and the environment. Annual Review of Genetics 29: 349-370.PubMedGoogle Scholar
  18. Jacobs, J., 1990. Microevolution in predominantly clonal populations of pelagic Daphnia (Crustacea, Phyllopoda) — selection, exchange and sex. Journal of Evolutionary Biology 3: 257-282.Google Scholar
  19. King, C. E. & M. R. Miracle, 1995. Diel vertical migration by Daphnia longispina in a Spanish lake — genetic sources of distributional variation. Limnology and Oceanography 40: 226-231.Google Scholar
  20. Knisely, K. & W. Geller, 1986. Selective feeding of four zooplankton species on natural lake phytoplankton. Oecologia 69: 86-94.Google Scholar
  21. Lynch, M., 1984. The genetic structure of a cyclical parthenogen. Evolution 38: 186-203.Google Scholar
  22. Lynch, M., 1985. Speciation in the Cladocera. Verh. int. Ver. Limnol. 22: 3116-3123.Google Scholar
  23. Mort, M. A. & H. G. Wolf, 1986. The genetic structure of large — lake Daphnia populations. Evolution 40: 756-766.Google Scholar
  24. Pfrender, M. E. & M. Lynch, 2000. Quantitative genetic variation in Daphnia: temporal changes in genetic architecture. Evolution 54: 1502-1509.PubMedGoogle Scholar
  25. Salonen, K. & A. Lehtovaara, 1992. Migrations of hemoglobin-rich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia 229: 271-288.Google Scholar
  26. Sell, A. F., U. Hornig & J. Benndorf, 1997. Long-term effects of planktivore removal: results from a manipulated and a reference lake. Verh. int. Ver. Limnol. 26: 782-785.Google Scholar
  27. Stross, R. G., 1965. Termination of summer and winter diapause in Daphnia. American Journal of Zoology 5: 701-757.Google Scholar
  28. Stross, R. G., 1987. Photoperiodism and phased growth in Daphnia populations: coactions in perspective. In Peters, R.H. & R. De Bernardi (eds), Daphnia. Istituto Italiano di Idrobiologia, Pallanza: 413-437.Google Scholar
  29. Weider, L. J., 1984. Spatial heterogeneity of Daphnia genotypes — vertical migration and habitat partitioning. Limnology and Oceanography 29: 225-235.Google Scholar
  30. Weider, L. J. & A. Hobaek, 2003. Glacial refugia, haplotype distributions and clonal richness of the Daphnia pulex complex in arctic Canada. Molecular Ecology 12: 463-473.PubMedGoogle Scholar
  31. Weider, L. J., A. Hobaek, P. D. N. Hebert & T. J. Crease, 1999. Holarctic phylogeography of an asexual species complex — II. Allozymic variation and clonal structure in Arctic Daphnia. Molecular Ecology 8: 1-13.Google Scholar
  32. Weider, L. J. & W. Lampert, 1985. Differential response of Daphnia genotypes to oxygen stress: respiration rates, hemoglobin content and low-oxygen tolerance. Oecologia 65: 487-491.Google Scholar
  33. Weider, L. J. & H. B. Stich, 1992. Spatial and temporal heterogenity of Daphnia in Lake Constance; intra-and interspecific comparisons. Limnology and Oceanography 37: 1327-1334.Google Scholar
  34. Wissel, B., K. Freier, B. MÜ ller, J. H. E. Koop & J. Benndorf, 2000. Moderate planktivorous sh biomass stabilizes biomanipulation by suppressing large invertebrate preadators of Daphnia. Archives of Hydrobiology 149: 177-192.Google Scholar
  35. Wolf, H. G. & G. R. Carvalho, 1989. Resting eggs of lake-Daphnia. II. In situ observations on the hatching of eggs and their contribution to population and community structure. Freshwater Biology 22: 471-478.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Marco Matthes
    • 1
  1. 1.Institute of HydrobiologyDresden University of TechnologyDresdenGermany

Personalised recommendations