Advertisement

Hydrobiologia

, Volume 526, Issue 1, pp 63–71 | Cite as

Amplified Fragment Length Polymorphism (AFLP) Reveals Species-Specific Markers in the Daphnia Galeata–HyalinaSpecies Complex

  • Massimiliano Gili
  • Michael T. Monaghan
  • Piet Spaak
Article

Abstract

Daphnia often occur in species complexes that consist of two or more co-occurring species and their hybrids. Hybrid individuals are often capable of sexual reproduction and so backcrossing with introgression occurs. To better understand hybridization and backcrossing frequency, we sought to develop PCR-based, species-specific markers in the Daphnia galeata–hyalina species complex using amplified fragment length polymorphism (AFLP). This technique produces large numbers of reproducible markers for assessing diversity across the nuclear genome and provides several advantages over mtDNA and microsatellite approaches. We examined 28 clones of D. galeata, D. hyalina, and their hybrids isolated from Lake Constance on the Swiss-German border. Using a single AFLP primer combination we found five potential species-specific markers, defined as bands that occurred in >80% of one parental species and <20% of the other. Two bands appeared to be co-dominant and were present (homozygous) in D. galeata, absent in D. hyalina, and heterozygous in the hybrid. We conclude AFLP could provide enough PCR-based, species-specific markers to identify species, hybrids, and backcrosses from even small amounts of tissue (i.e. resting eggs).

hybridization molecular marker backcrossing introgression Daphnia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beismann, H., J. H. A. Barker, A. Karp & T. Speck, 1997. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Molecular Ecology 6: 989-993.Google Scholar
  2. Bensch, S., A. J. Helbig, M. Salomon & I. Siebold, 2002. Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Molecular Ecology 11: 473-481.PubMedGoogle Scholar
  3. Boecklen, W. J. & D. J. Howard, 1997. Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78: 2611-2616.Google Scholar
  4. Castiglioni, P., P. Ajmone-Marsan, R. van Wijk & M. Motto, 1999. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theoretical and Applied Genetics 99: 425-431.Google Scholar
  5. Colbourne, J. K. & P. D. N. Hebert, 1996. The systematics of North-American Daphnia (crustacea, anomopoda)–a molecular phylogenetic approach. Philosophical Transactions of the Royal Society London Series B-Biological Sciences 351: 349-360.Google Scholar
  6. Duffy, M. A., L. J. Perry, C. M. Kearns, L. J. Weider & N. G. Hairston, 2000. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. Limnology and Oceanography 45: 1409-1414.Google Scholar
  7. Ender, A., K. Schwenk, T. Stadler, B. Streit & B. Schierwater, 1996. Rapd identification of microsatellites in Daphnia. Molecular Ecology 5: 437-441.PubMedGoogle Scholar
  8. Flößner, D., 1993. Zur Kenntnis einiger Daphnia-Hybriden. Limnologica 23: 71-79.Google Scholar
  9. Gießler, S., 1997. Analysis of reticulate relationships within the Daphnia longispina species complex. Allozyme phenotype and morphology. Journal of Evolutionary Biology 10: 87-105.Google Scholar
  10. Gießler, S., 2001. Morphological difierentiation within the Daphnia longispina group. Hydrobiologia 442: 55-66.Google Scholar
  11. Gießler, S., E. Mader & K. Schwenk, 1999. Morphological evolution and genetic difierentiation in Daphnia species complexes. Journal of Evolutionary Biology 12: 710-723.Google Scholar
  12. Jankowski, T., 2002. From diapause to sexual reproduction: evolutionary ecology of the Daphnia hybrid complex from Lake Constance. Ph.D. Thesis, Universität Konstanz, Konstanz, 106 pp.Google Scholar
  13. Jansen, R. C., H. Geerlings, A. J. Van Oeveren & R. C. Van Schaik, 2001. A comment on codominant scoring of AFLP markers. Genetics 158: 925-926.PubMedGoogle Scholar
  14. Leydig, F., 1860. Naturgeschichte der Daphniden <Crustacea cladocera>. Laupp, Tübingen, 252 pp.Google Scholar
  15. Limburg, P. A. & L. J. Weider, 2002. 'Ancient' DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proceedings of the Royal Society London Series B-Biological Science 269: 281-287.Google Scholar
  16. Ogden, R. & R. S. Thorpe, 2002. The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Molecular Ecology 11: 437-445.PubMedGoogle Scholar
  17. O'Hanlon, P. C., R. Peakall & D. T. Briese, 1999. Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Molecular Ecology 8: 1239-1246.PubMedGoogle Scholar
  18. Pfrender, M. E., K. Spitze & N. Lehman, 2000. Multi-locus genetic evidence for rapid ecologically based speciation in Daphnia. Molecular Ecology 9: 1717-1735.PubMedGoogle Scholar
  19. Piepho, H. P. & G. Koch, 2000. Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics 155: 1459-1468.PubMedGoogle Scholar
  20. Schwenk, K., 1993. Interspecific hybridization in Daphnia: distinction and origin of hybrid matrilines. Molecular Biology and Evolution 10: 1289-1302.PubMedGoogle Scholar
  21. Schwenk, K., 1997. Evolutionary genetics of Daphnia species complexes — hybridism in syntopy. Ph.D. Thesis, University of Utrecht, Utrecht, 141 pp.Google Scholar
  22. Schwenk, K., D. Posada & P. D. N. Hebert, 2000. Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proceedings of the Royal Society London Series B-Biological Science 267: 1833-1842.Google Scholar
  23. Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquatic Ecology 32: 37-51.Google Scholar
  24. Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465-481.Google Scholar
  25. Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy the principles and practice of numerical classification. Freeman, San Francisco, XV, 573 pp.Google Scholar
  26. Spaak, P., 1996. Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for backcrossing. Heredity 76: 539-548.Google Scholar
  27. Spaak, P., A. Denk, M. Boersma & L. J. Weider, 2004. Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex. Journal of Plankton Research, in press.Google Scholar
  28. StatSoft, I., 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.Google Scholar
  29. Sunnucks, P. & D. F. Hales, 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13: 510-524.PubMedGoogle Scholar
  30. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.PubMedGoogle Scholar
  31. Vos, P. & M. Kuiper, 1997. AFLP Analysis. In Caetano-Annoles, G. & P. M. Gressho. (eds), DNA Markers: Protocols, Applications, and Overviews, Wiley-VCH, New York: 115-131.Google Scholar
  32. Wolf, H. G., 1987. Interspeci.c hybridization between Daphnia hyalina, D. galeata and D. cucullata and seasonal abundance of these species and their hybrids. Hydrobiologia 145: 213-217.Google Scholar
  33. Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68: 507-511.Google Scholar
  34. Wong, A., M. R. Forbes & M. L. Smith, 2001. Characterization of AFLP markers in damselfiies: prevalence of codominant markers and implications for population genetic applications. Genome 44: 677-684.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Massimiliano Gili
    • 1
    • 2
  • Michael T. Monaghan
    • 1
    • 3
  • Piet Spaak
    • 1
  1. 1.Department of LimnologyEAWAGDübendorfSwitzerland
  2. 2.Via Stazione 78None (Torino)Italy
  3. 3.Molecular Systematics Laboratory, Department of EntomologyThe Natural History MuseumLondonUK

Personalised recommendations