Advertisement

Hydrobiologia

, Volume 523, Issue 1–3, pp 217–223 | Cite as

Factors Influencing Algae–Clay Aggregation

  • Mariana Guenther
  • Reinaldo Bozelli
Article

Abstract

The dumping of bauxite tailings on a clear-water Amazonian lake caused a significant decrease in phytoplankton densities. The influence of these suspended clay particles on algal sinking, through algae–clay aggregation, was investigated under laboratory conditions, by measuring fluctuations in algal population densities over time, with different suspended clay concentrations. The population densities of the four algal species tested, Phormidium amoenum, Mougeotia sp., Staurodesmus convergens and Chlorella sp., were decreased by the algae–clay aggregation. The extent of this process was dependent on algal morphological characteristics such as size and shape, as well as on the concentration of suspended clay particles.

algae clay kaolin aggregation turbidity Amazon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambühl, H. & H. Buhrer, 1975. Technik der Entnahme un-gerstörtern Grossproblen von Seesedimenten; ein verbessertes Bohrlot. Schweizerische Zeitschrift für Hydrologie 37: 175–186.Google Scholar
  2. Avnimelech, Y., B. W. Troeger & L. W. Reed, 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216: 63–65.PubMedGoogle Scholar
  3. Bozelli, R. L., F. A. Esteves & F. Roland, 2000. Lago Batata: Impacto e Recuperação de um Ecossistema Amazônico. Instituto de Biologia-Universidade Federal do Rio de Janeiro/Sociedade Brasileira de Limnologia, Rio de Janeiro, 342 pp.Google Scholar
  4. Bozelli, R. L. & A. V. Garrido, 2000. Gradient of inorganic turbidity and responses of planktonic communities in an Amazonian lake, Brazil. Verhandlungen der Internationale Vereinigung für Limnologie 27: 147–151.Google Scholar
  5. Buckman, H. O. & N. C. Brady, 1960. The Nature and Properties of Soils. Macmillan Publishing Co., Inc., pp.Google Scholar
  6. Cuker, B. E., 1987. Field experiments on the influences of suspended clay and P on the plankton of a small lake. Limnology and Oceanography 32: 840–847.Google Scholar
  7. Cuker, B. E., P. T. Gama & J. M. Burkholder, 1990. Type of suspended clay influences lake productivity and phytoplankton community response to phosphorus loading. Limnology and Oceanography 35: 830–839.Google Scholar
  8. Guilard, R. R. L. & C. J. Lorenzen, 1972. Yellow-green algae with chlorophyllide. Journal of Phycology 8: 10–14.Google Scholar
  9. Harris, R. H. & R. Mitchell, 1973. The role of polymers in microbial aggregation. Annual Review of Microbiology 27: 27–50.CrossRefPubMedGoogle Scholar
  10. Huszar, V. L. M., 2000. Fitoplâncton. In Bozelli, R. L., F. A. Esteves & F. Roland (eds), Lago Batata: Impacto e Recuperação de um Ecossitema Amazônico. Instituto de Biologia-Universidade Federal do Rio de Janeiro/Sociedade Brasileira de Limnologia, Rio de Janeiro: 89–104.Google Scholar
  11. Jackson, G. A., 1990. A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Research 37: 1197–1211.CrossRefGoogle Scholar
  12. Kimmel, B. L., 1983. Size distribution of plankton autotrophy and microheterotrophy: implications for organic carbon flow in reservoir food webs. Archiv für Hydrobiologie 97: 303–319.Google Scholar
  13. Kiorboe, T., K. P. Andersen & H. G. Dam, 1990. Coagulation efficiency and aggregate formation in marine phytoplankton. Marine Biology 107: 235–245.CrossRefGoogle Scholar
  14. Kirk, J. T. O., 1985. Effects of suspensoids (turbidity) on penetration of solar radiation in aquatic ecosystems. Hydrobiologia 125: 195–208.CrossRefGoogle Scholar
  15. Lapa, R., 2000. A bauxita e o rejeito de bauxita. In Bozelli, R. L., F. A. Esteves & F. Roland (eds), Lago Batata: Impacto e Recuperação de um Ecossistema Amazônico. Instituto de Biologia-Universidade Federal do Rio de Janeiro/Sociedade Brasileira de Limnologia, Rio de Janeiro: 25–37.Google Scholar
  16. Lewis, W. M., 1976. Surface/volume ratio-implications for phytoplankton morphology. Science 192: 885–887.PubMedGoogle Scholar
  17. Lind, O. T. & L. Dávalos, 1990. Clay, dissolved organic matter and bacterial interactions in two reservoirs. Archiv für Hydrobiologie Beihefte Ergebnisse der Limnologie 34: 119–125.Google Scholar
  18. Lund, J. W. G., C. Kipling & E. D. Lecren, 1958. The inverted microscope method of estimating algal number and the statistical basis of estimating by counting. Hydrobiologia 11: 143–170.CrossRefGoogle Scholar
  19. Melack, J. M., 1985. Interactions of detrital particulates and plankton. Hydrobiologia 125: 209–220.CrossRefGoogle Scholar
  20. Neihof, R. A. & G. I. Loeb, 1972. The surface charge of particulate matter in seawater. Limnology and Oceanography 17: 7–16.CrossRefGoogle Scholar
  21. Paerl, H. W., 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine and freshwater ecosystems. Limnology and Oceanography 19: 966–972.CrossRefGoogle Scholar
  22. Paul, E. A., 1988. Soil Microbiology and Biochemistry. Academic Press, Inc., San Diego, California, pp.Google Scholar
  23. Reynolds, C. S., 1993. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge, 384 pp.Google Scholar
  24. Roland, F. & F. A. Esteves, 1993. Dynamics of phosphorus, carbon and nitrogen in an Amazonian lake impacted by bauxite tailings (Batata Lake, Pará, Brazil). Verhandlungen der Internationale Vereinigung für Limnologie 25: 925–930.Google Scholar
  25. Salati, E. & J. Marques, 1984. Climatology of the Amazon region. In Sioli, H. (ed.), The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Dr W Junk Publishers, Dordrecht: 85–126.Google Scholar
  26. Soballe, D. M. & S. T. Threlkeld, 1988. Algal-clay flocculation in turbid waters: variations due to algal and mineral differences. Verhandlungen der Internationale Vereinigung für Limnologie 23: 750–754.Google Scholar
  27. Staub, R., 1961. Ernährungsphysiologisch-autökologische Untersuchungen an der plancktonische Blaualge Oscillatoria rubescens DC. Schweizerische Zeitschrift für Hydrologie 23: 82–198.Google Scholar
  28. Uhelinger, V., 1964. Étude statistique des méthodes de dénombrement planctonique. Archives des Sciences 17: 121–223.Google Scholar
  29. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung theoretische ung angewandte Limnologie 9: 1–38.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Mariana Guenther
    • 1
  • Reinaldo Bozelli
    • 2
  1. 1.Laboratório de Zooplâncton, Departamento de Biologia Marinha, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Laboratório de Limnologia, Departmento de EcologiaInstituto de Biologia, Universidade Federal do Rio de Janeiro, Ilha do FundãoRio de JaneiroBrazil

Personalised recommendations