, Volume 523, Issue 1–3, pp 71–85 | Cite as

Bloom of Picocyanobacteria in the Venice Lagoon During Summer–Autumn 2001: Ecological Sequences

  • P.Yu. Sorokin
  • Yu.I. Sorokin
  • R. Boscolo
  • O. Giovanardi


A dense bloom of picocyanobacteria with biomass of 10–50 g m−3(wet weight) and numerical density 5–20 × 106 cells ml−1 broke out in the Lagoon of Venice in July 2001. The share of picocyanobacteria of the total phytoplankton varied in the Venice lagoon in July–September from 60 to 98% depending on the vicinity of the site to the channel’s driving tidal currents. The washout of the picocyanobacterial biomass occurred during the ebbs to the shelf zone of the adjacent Adriatic sea. The biomass of picocyanobacteria in coastal Adriatic water was at that time up to 1.7 g m−3(w.w.) with the share of picocyanobacteria ranging from 70 to 90%. The rest consisted of small phytoflagellats. The contents of suspended and labile organic matter in water increased during the bloom by a factor of 5–15. The photosynthesis rate in upper water layers rose by about 2 orders of magnitude, attaining 3–5 g C m−3 day−1, with a decomposition rate of 2–3 mg O2 l−1 day−1. The residence time of inorganic phosphorus standing stock in water was found to be as short as 6–12 min. The populations of micro- and mesozooplankton were found to be inhibited in areas of intensive bloom. A significant mortality of key species for the local fishery, e.g. the Manila clam, Tapes philippinarum, was recorded in the lagoon in September–October.

bloom picocyanobacteria Lagoon of Venice Tapes philippinarum environmental impact 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARPA, Emilia Romagna Region, 1996. Eutrofizzazione delle acque costiere dell’Emilia Romagna, Rovigo, Annual Report, 234 pp.Google Scholar
  2. Artegiani, A., D. Bregant, E. Paschini, N. Pinardi, F. Raicich & A. Russo, 1997. The Adriatic sea general circulation. Part II: Baroclinic circulation structure. Journal of Physical Oceanography 27: 1515–1532.CrossRefGoogle Scholar
  3. Barale, V., C. R. McClain & P. Malanotte-Rizzoli, 1986. Space and time variability of the surface color field in the northern Adriatic sea. Journal of Physical Oceanography 91: 12957–12974.Google Scholar
  4. Bianchi, F., F. Acri, L. Alberghi & M. M. Turchetto, 2000. Biological variability in the Venice lagoon. In Lasserre P. & A. Marzollo (eds), The Venice Lagoon Ecosystem. Man and Biosphere Series, UNESCO, 25: 97–125.Google Scholar
  5. Caron, D. A., 1983. Techniques for emeration of microplankton, using epifluorescence microscopy. Applied and Environmental Microbiology 46: 491–498.PubMedGoogle Scholar
  6. Casale, M., O. Giovanardi, F. Grimm, G. Orel & G. Pessa, 2001. Distribuzione ed abbondanza delle principali specie di molluschi bivalvi nella Laguna di Venezia nell’estate 1999, con particolare riguardo per Tapes philippinarum (Adams & Reeve, 1850). Biologia Marina Mediterranea 8: 413–423.Google Scholar
  7. Chorus, I., 2002. Cyanotoxins, Occurrence, Causes and Consequences. Springer, Heidelberg, 357 pp.Google Scholar
  8. Cossu, R., E. de Fraja Frangipane, D. Degobbis, A. A. Orio & G. Andreolotta, 1987. Pollution and eutrophication in the Venice lagoon. Water Science Technology 19: 813–822.Google Scholar
  9. Degobbis, D., 1989. Increased eutrophication in the Northern Adriatic. Marine Pollution Bulletin 20: 452–457.CrossRefGoogle Scholar
  10. Facca, C., A. Sfirso & G. Socal, 2002. Changes in abundance and composition of phytoplankton and microzoobenthos due to increased sediment fluxes in the Venice lagoon. Estuarine Coastal and Shelf Science 54: 773–792.CrossRefGoogle Scholar
  11. Glower, H. E. & J. Morris, 1981. Photosynthetic characteristics of coccoid cyanobacteria. Archives of Microbiology 129: 42–46.Google Scholar
  12. Granzotto, A., F. Pranzoi, A. Longo, F. Pranovi & P. Torricelli, 2001. La pesca nella laguna di Venezia. Rapporto Dipartimento Scienze Ambientali, Cà Foscari University, Venezia, 57 pp.Google Scholar
  13. Grimaldi, E., 1983. Aquacoltura ed ambiente. Trans. Congr. on Aquaculture Problems in Italy, Chioggia-Sottomarina, Institute of Scotti Bassani, Milan, 12-17 pp.Google Scholar
  14. Hobbie, J., R. J. Daley & S. Jasper, 1977. Use of Nuclepore filters for counting bacteria of fluorescence microscopy. Applied and Environmental Microbiology 33: 1225–1228.PubMedGoogle Scholar
  15. Krempkin, D. W. & C. W. Sullivan, 1981. The seasonal abundance, vertical distribution and relative microbial biomass of chroococcoid cyanobacteria at a station in southern California coastal waters. Canadian Journal of Microbiology 27: 1341–1344.Google Scholar
  16. Lavallée, B. F. & F. R. Pick, 2002. Picocyanobacteria abundance in relation to growth and loss rates in oligotrophic to mesotrophic lakes. Aquatic Microbiology and Ecology 27: 37–46.Google Scholar
  17. Marcomini, A., A. Sfirso, B. Pavoni & A. A. Orio, 1995. Eutrophication of the lagoon of Venice. In Mc Comb A. J. (ed.), Eutrophic Shallow Estuaries and Lagoons. CRC Press, Boca Raton, Florida, USA: 59–80.Google Scholar
  18. Nakamura, Y., S. Sasaki, J. Hiromi & K. Fukami, 1993. Dynamics of picocyanobacteria in the Seto sea, Japan. Marine Ecology Progress Series 96: 117–124.Google Scholar
  19. Ning, X., J. E. Cloem & B. E. Cole, 2000. Variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnology and Oceanography 45: 695–702.CrossRefGoogle Scholar
  20. Parsons, T. R., Y. R. Maita & C. M. Lalli, 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, 173 pp.Google Scholar
  21. Perin, G. B. & A. Gabelli, 1983. Inquinamento chimico della Laguna di Venezia: contaminanti di origine urbana e industriale nelle acque. Acqua Aria 6: 615–621.Google Scholar
  22. Provincia di Venezia, 2001. Concessione attività di venericoltura in acque marine interne. Anno 2001. Settore Caccia, Pesca e Polizia Provinciale. Unità operativa Caccia e Pesca. Registrazione CED no 102479. Allegato D.Google Scholar
  23. Riegman, R. & L. R. Mur, 1986. Phytoplankton growth and phosphate uptake for P-limitation. Limnology and Oceanography 31: 983–988.CrossRefGoogle Scholar
  24. Rippka, R., 1972. Photoheterotrophy and chemoheterotrophy among unicellular cyanobacteria. Archives of Microbiology 87: 93–98.Google Scholar
  25. Rossi, R., 2000. Elementi di valutazione ecologica, economica e sociale per fronteggiare la flessione produttiva di vongole filippine nell’Alto Adriatico. MiPAF, Ministry of Agricultural and Forest Politics. Final report, Project 5C02, 64 pp.Google Scholar
  26. Rossi, R. & S. Cataudella, 1998. La produzione ittica della valle di Comacchio. Laguna (Ferrara), 5(Suppl. ¦): 67–84.Google Scholar
  27. Sfriso, A., 1996. Decrease production and changes macrophyte typology and distribution in the Venice lagoon. Inquinamento 5: 80–88.Google Scholar
  28. Sfriso, A., B. Pavoni, A. Marcomini & A. Orio, 1992. Macroalgae, nutrient cycles and pollutions in the lagoon of Venice. Estuaries 15: 517–528.Google Scholar
  29. Sfriso, A., A. Marcomini & B. Pavoni, 1994. Annual nutrient exchanges between the central lagoon of Venice and the northern Adriatic sea. Science of the Total Environment 156: 77–92.CrossRefGoogle Scholar
  30. Shmidt, A., 1988. Sulfur metabolism in cyanobacteria. In Backer L. & M. Glazek (eds), Methods of Enzymology. Acadamic Press, New York, 167: 572–583.Google Scholar
  31. Socal, G., F. Bianchi & L. Alberghi, 1999. Effects of thermal pollution and nutrient discharges on a spring phytoplankton bloom in the industrial area of Venice lagoon. Vie et Milieu 49: 19–31.Google Scholar
  32. Sorokin, P. Yu., Yu. I. Sorokin, O. Yu. Zakuskina & G.-P. Ravagnan, 2002. On the changing ecology of Venice lagoon. Hydrobiologia, in press.Google Scholar
  33. Sorokin, Yu. I., 1982. Microbial sulphate reduction in bottom sediments of some Italian bodies of water. Hydrobiology Journal Kiev 18: 38–42.Google Scholar
  34. Sorokin, Yu. I., 1998. Report on the scientific results of ecological studies in the Venice lagoon. ROSTE. UNESCO in Venice, 49 pp.Google Scholar
  35. Sorokin, Yu. I., 1999a. Radioisotopic Methods in Hydrobiology. Springer, Heidelberg, 323 pp.Google Scholar
  36. Sorokin, Yu. I., 1999b. Aquatic Microbial Ecology. Backhuys, Leiden, 245 pp.Google Scholar
  37. Sorokin, Yu. I. & O. Giovanardi, 1995. Trophic characteristics of the Manila clam Tapes philippinarum. ICES Journal Marine Science 52: 853–862.CrossRefGoogle Scholar
  38. Sorokin, Yu. I., R. Boscolo, 2002. La moria di vongole nell’estate 2001 in Laguna di Venezia era prevedibile. In causa una fioritura inusuale di picocianobatteri. Chioggia, Rivista di studi e ricerche 20: 55–60.Google Scholar
  39. Sorokin, Yu. I., P. Yu. Sorokin & A. Gnes, 1996a. Structure and functioning of antropogenically transformed Comacchio lagoon ecosystem (Ferrara, Italy). Marine Ecology Progress Series 133: 57–71.Google Scholar
  40. Sorokin, Yu. I., P. Yu. Sorokin, O. Giovanardi & L. Dallavenezia, 1996b. Study of the ecosystem of the Venice lagoon with emphasis on anthropogenic impact. Marine Ecology Progress Series 141: 247–261.Google Scholar
  41. Sorokin, Yu. I., F. Dallocchio, F. Gelli & L. Pregnolato, 1996c. Phosphorus metabolism in anthropogenically transformed Comacchio lagoons. Journal of Sea Research 35: 243–250.CrossRefGoogle Scholar
  42. Sorokin, Yu. I., P. Yu. Sorokin & O. Yu. Zakuskina, 1998. Microplankton and its function in zones of shallow hydrotherms in western Pacific. Journal of Plankton Research 20: 1015–1031.Google Scholar
  43. Sorokin, Yu. I., P. Yu. Sorokin & G. Ravagnan, 1999a. Analysis of lagoonal ecosystem in the Po river delta associated with intensive aquaculture. Estuarine Coastal and Shelf Science 48: 325–341.CrossRefGoogle Scholar
  44. Sorokin, Yu. I., O. Giovanardi, F. Pranovi & P. Yu. Sorokin, 1999b. Need for restricting bivalve culture in the southern basin of the Venice lagoon. Hydrobiologia 400: 141–148.CrossRefGoogle Scholar
  45. Stanier, G. H., 1977. Position of cyanobacteria in the world of phototrophs. Carlsberg Res. Comm. 42: 77–98.CrossRefGoogle Scholar
  46. Stockner, J. G. & N. J. Antia, 1986. Algal picoplankton from marine and freshwater ecosystems. Canadian Journal of Fishes and Aquatic Science 43: 2472–2503.CrossRefGoogle Scholar
  47. Stockner, J. G., C. Callieri & G. Cronberg, 2000. Picoplankton and other non-blooming cyanobacteria in lakes. In Whitton B. A. & M. Potts (eds), The Ecology of Cyanobacteria. Kluwer, Dordrecht: 125–231.Google Scholar
  48. Tchislenko, L. L., 1968. The nomograms for estimation of weight of aquatic animals after their size. Nauka, Leningrad, 105 pp (in Russian).Google Scholar
  49. Thomas, W. H. & A. N. Dodson, 1969. Effects of phosphate on cell division rates and geld of a tropical marine diatom. The Biological Bulletin 134: 199–208.Google Scholar
  50. Todini, E. & A. Bizzarri, 1988. Eutrophication in the coastal area of Emilia Romagna. UNESCO Bulletin on Marine Science 49: 143–152.Google Scholar
  51. Verity, P. G. & T. A. Villareal, 1986. The relative food value of cyanobacteria and other algae for tintinnid ciliates. Archivies Protistenk 131: 71–84.Google Scholar
  52. Viaroli, P., R. Azzoni & M. Bartoli, 2001. Trophic conditions and distrophic outbrakes in the Sacca di Goro lagoon. In Farranda F. M. (ed.), Mediterranean Ecosystem. Springer, Italia: 164–174.Google Scholar
  53. Vollenveider, R., 1992. Marine Coastal Eutrophication. Elsevier, Amsterdam, 950 pp.Google Scholar
  54. Zore, M., 1958. Some new observations on the system of Adriatic currents. Rapp. P-V. RCIESM 14: 47–54.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P.Yu. Sorokin
    • 1
  • Yu.I. Sorokin
    • 1
  • R. Boscolo
    • 2
  • O. Giovanardi
    • 2
  1. 1.Southern Department of Shirshov Oceanology Institute RASKrasnodar districtRussia
  2. 2.Central Institute for Applied Marine Research – ICRAM, LocBrondoloItaly

Personalised recommendations