Advertisement

Hydrobiologia

, Volume 522, Issue 1–3, pp 249–260 | Cite as

Life history pattern and feeding ecology of the introduced eastern mosquitofish, Gambusia holbrooki, in a thermal spa under temperate climate, of Lake Hévíz, Hungary

  • András Specziár
Article

Abstract

The life history pattern and feeding ecology of introduced eastern mosquitofish was studied in Lake Hévíz, an extreme thermal habitat under temperate climate. There was a marked difference in the size distribution, sex ratio and diet composition of fish between the lake and the mudholes along the shore line. The sex ratio was 1:8 and 2:1 in the lake and in the mudholes, respectively. The smallest male with gonopodium was 12.9 mm and the smallest female with embryos was 13.2 mm, suggesting a very early maturity in both sexes. From April to July almost all females were pregnant, but from August the ratio of pregnancy started to decrease and it was only 18% in late September. The average brood size per female reached a maximum in the beginning of May when the largest overwintered females were reproducing. From the end of May to the middle of September the mean brood size stabilised within a very low embryo per female range. The diet of eastern mosquitofish consisted of aquatic- and terrestrial invertebrates, filamentous algae and detritus. Rate of cannibalism was 1%. The diet of fish showed significant temporal and spatial differences. However, most of the size and sex dependent variations in the diet could be due to different habitat use of juveniles, males and females. Feeding strategy analyses suggested a high individual specialisation, and thus an opportunistic feeding strategy for eastern mosquitofish both in juvenile and adult stages.

Gambusiaholbrooki reproduction fecundity diet feeding strategy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amundsen, P. A., H. M. Gabler & F. J. Staldvik, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data: modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.Google Scholar
  2. Arthington, A. H., 1989. Diet of Gambusia affinis holbrooki, Xiphophorus helleri, X. maculatus and Poecilia reticulata (Pisces: Poeciliidae) in streams of southeastern Queensland, Australia. Asian Fisheries Science 2: 193–212.Google Scholar
  3. Arthington, A. H., 1992. Diets and trophic guild structure of freshwater fishes in Brisbane streams. Proceedins of the Royal Society of Queensland 102: 31–48.Google Scholar
  4. Arthington, A. H. & L. N. Lloyd, 1989. Introduced Poeciliidae in Australia and New Zealand. In Meffe, G. K. & F. F. Snelson (eds), Evolution and Ecology of Livebearing Fishes (Poeciliidae). Prentice-Hall, New York: 333–348.Google Scholar
  5. Arthington, A. H. & C. J. Marshall, 1999. Diet of the exotic mosquitofish Gambusia holbrooki in an Australian lake and potential for competition with indigenous fish species. Asian Fisheries Science 12: 1–16.Google Scholar
  6. Benoit, H. P., J. R. Post & A. D. Barbet, 2000. Recruitment dynamics and size structure in experimental populations of the mosquitofish, Gambusia affinis. Copeia 2000: 216–221.Google Scholar
  7. Bíró, P., 1976. A Hévízi-tó halfaunájáról. Halászat 22: 186–188.Google Scholar
  8. Bisazza, A., E. Zulian & E. Merlin, 1990. Reproductive biology of Gambusia holbrooki in north-eastern Italy. Rivista di Idrobiologia 29: 151–162.Google Scholar
  9. Blaustein, L. & R. Karban, 1990. Indirect effects of the mosquitofish Gambusia affinis on the mosquito Culex tarsalis. Limnology and Oceanography. 35: 767–771.CrossRefGoogle Scholar
  10. Britton, R. H. & M. E. Moser, 1982. Size specific predation by herons and its effect on the sex-ratio of natural populations of the mosquito fish Gambusia affinis Baird and Girard. Oecologia (Berl) 53: 146–151.CrossRefGoogle Scholar
  11. Cabral, J. A., C. L. Mieiro & J. C. Marques, 1998. Environmental and biological factors influence the relationship between a predator fish, Gambusia holbrooki, and its main prey in rice fields of the Lower Mondego River Valley (Portugal). Hydrobiologia 382: 41–51.CrossRefGoogle Scholar
  12. Courtenay, W. R. & G. K. Meffe., 1989. Small fishes in strange places: a review of introduced poeciliids. In Meffe, G. K. & Snelson, F. F. (eds), Ecology and Evolution of Livebearing Fishes (Poeciliidae). Prentice Hall, New Jersey: 319–331.Google Scholar
  13. Crivelli, A. J. & V. Boy, 1987. The diet of mosquitofish, Gambusia affinis (Braird & Girard) (Poeciliidae) in Mediterranien France. Revue d’Ecologie 42: 421–435.Google Scholar
  14. Englund, R. E., 1999. The impacts of introduced Poeciliid fish and Odonata on the endemic Megalagrion (Odonata) damselflies of Oahu Island, Hawaii. Journal of Insect Conservation 3: 225–243.CrossRefGoogle Scholar
  15. Farley, D. G., 1980. Prey selection by the mosquitofish, Gambusia affinis. Proceedings of the Calfornia Mosquito Vector Control Association 48: 51–55.Google Scholar
  16. Fernández-Delgado, C., 1989. Life-history patterns of the mosquito-fish, Gambusia affinis, in the estuary of the Guadalquivir river of south-west Spain. Freshwater Biology 22: 395–404.Google Scholar
  17. Fernández-Delgado, C. & S. Rossomanno, 1997. Reproductive biology of the mosquitofish in a permanent natural lagoon in south-west Spain: two tactics for one species. Journal of Fish Biology 51: 80–92.PubMedGoogle Scholar
  18. Garcia-Berthou, E., 1999. Food of introduced mosquitofish: ontogenetic diet shift and prey selection. Journal of Fish Biology 55: 135–147.CrossRefGoogle Scholar
  19. Goodsell, J. A. & L. B. Kats, 1999. Effect of introduced mosquitofish on pacific treefrogs and the role of alternative prey. Conservation Biology 13: 921–924.CrossRefGoogle Scholar
  20. Gophen, M., Y. Yehuda, A. Malinkov & G. Degani, 1998. Food composition of the fish community in Lake Agmon. Hydrobiologia 380: 49–57.CrossRefGoogle Scholar
  21. Harrington, R. W. & E. S. Harrington, 1982. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bulletin of Marine Science 32: 523–531.Google Scholar
  22. Hayford, B. L., J. E. Sublette & S. J. Herrmann, 1995. Distribution of chironomids (Diptera: Chironomidae) and ceratopogonids (Diptera: Ceratopogonidae) along a Colorado thermal spring effluent. Journal of the Kansas Entomological Society 68: 77–92.Google Scholar
  23. Haynes, J. L. & R. C. Cashner, 1995. Life history and population dynamics of the western mosquitofish: a comparison of natural and introduced populations. Journal of Fish Biology 46: 1026–1041.Google Scholar
  24. Howe, E., C. Howe, R. Lim & M. Burchett, 1997. Impact of the introduced poeciliid Gambusia holbrooki (Girard, 1859) on the growth and reproduction of Pseudomugil signifer (Kner, 1865) in Australia. Marine and Freshwater Research 48: 425–434.CrossRefGoogle Scholar
  25. Hyslop, E. J., 1980. Stomach content analysis-a review of methods and their application. Journal of Fish Biology 17: 411–429.Google Scholar
  26. Ivantsoff, W & Aarn, 1999. Detection of predation on Australian native fishes by Gambusia holbrooki. Marine and Freshwater Research 50: 467–468.Google Scholar
  27. Komak, S. & M. R. Crossland, 2000. An assessment of the introduced mosquitofish (Gambusia affinis holbrooki) as a predator of eggs, hatchlings and tadpoles of native and non-native anurans. Wildlife Research 27: 185–189.CrossRefGoogle Scholar
  28. Krumholz, L. A., 1948. Reproduction in the western mosquito fish Gambusia affinis and its use in mosquito control. Ecological Monographs 18: 1–43.Google Scholar
  29. Mansfield, S. & B. H. McArdle, 1998. Dietary composition of Gambusia affinis (Family Poeciliidae) populations in the northern Waikato region of New Zealand. New Zealand Journal of Marine and Freshwater Research 32: 375–383.CrossRefGoogle Scholar
  30. Margaritora, F. G., 1990. Influence of Gambusia affinis on the feature and dynamic of the zooplankton community in the pools of Castel Porziano (Latium). Rivista di Idrobiologia 29: 747–762.Google Scholar
  31. Meffe, G. K., 1986. Cannibalism, food availability, and reproduction in mosquitofish: a critique. The American Naturalist 127: 897–901.Google Scholar
  32. Meffe, G. K., 1991. Life history changes in eastern mosquitofish (Gambusia holbrooki) induced by thermal elevation. Canadian Journal of Fisheries and Aquatic Sciences 48: 60–66.Google Scholar
  33. Meffe, G. K., 1992. Plasticity of life-history characters in eastern mosquitofish (Gambusia holbrooki: Poeciliidae) in response to thermal stress. Copeia 1992: 94–102.Google Scholar
  34. Meffe, G. K. & F. F. Snelson, 1989. An ecological overview of poeciliid fishes. In Meffe, G. K. & F. F. Snelson (eds), Ecology and evolution of livebearing fishes (Poeciliidae). Prentice Hall, New Jersey: 13–31.Google Scholar
  35. Meffe, G. K., S. C. Weeks, M. Mulvey & K. L. Kandl, 1995. Genetic differences in thermal tolerance of eastern mosquitofish (Gambusia holbrooki; Poecillidae) from ambient and thermal ponds. Canadian Journal of Fisheries and Aquatic Sciences 52: 2704–2711.CrossRefGoogle Scholar
  36. Mihályfi, F., 1939. A szÚnyog elleni védekezés entomológiai előkészítése Hévízen. Állattani Közlemények 36: 107–117.Google Scholar
  37. Milton, D. A. & A. H. Arthington, 1983. Reproductive biology of Gambusia affinis holbrooki Baird and Girard, Xiphophorus helleri (Günther) and X. maculatus (Heckel) (Pisces; Poeciliidae) in Queensland, Australia. Journal of Fish Biology 23: 23–41.Google Scholar
  38. Morgan L. A. & Buttemer W. A., 1996. Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles. Australian Zoologist 30: 143–149.Google Scholar
  39. Nesbit D. H. & Meffe G. K., 1993. Cannibalism frequencies in wild populations of the eastern mosquitofish (Gambusia holbrooki: Poeciliidae) in South Carolina. Copeia 1993: 867–870.Google Scholar
  40. Podani, J., 1994. Multivariate Data Analysis in Ecology and Systematics. SPB Publishing, The Hague, 316 pp.Google Scholar
  41. Ponyi, J., 1995. A Hévízi-tó állatvilága. Hidrológiai Tájékoztató 1995 April: 21–23.Google Scholar
  42. Pritchard, G., D. D. Williams & H. V. Danks, 1991. Insects in thermal springs. Memoirs of the Entomological Society of Canada 151: 89–106.Google Scholar
  43. Rupp, H. R., 1996. Adverse assessments of Gambusia affinis: an alternative view for mosquito control practitioners. Journal of the American Mosquito Control Association 12: 155–166.PubMedGoogle Scholar
  44. Sawara, Y., 1974. Reproduction of the mosquitofish (Gambusia af-finis affinis), a freshwater fish introduced into Japan. Japanese Journal of Ecology 24: 140–146.Google Scholar
  45. Szabó, I., 2002. A Hévízi-tó és lápi mellékvizeinek magasabbrendű növényzete. In Ponyi, J. (ed.), A Hévízi forrástó ökológiai állapota. Hévízi Könyvtár 15, Nereus Bt., Hévízfürdő: 35–49.Google Scholar
  46. Vargas, M. J. & A. de Sostoa, 1996. Life history of Gambusia holbrooki (Pisces, Poeciliidae) in the Ebro Delta (NE Iberian Peninsula). Hydrobiologia 341: 215–224.Google Scholar
  47. Webb, C. & J. Joss, 1997. Does predation by the fish Gambusia holbrooki (Atheriniformes: Poeciliidae) contribute to declining frog populations? Australian Zoologist 30: 316–326.Google Scholar
  48. Wiesinger, M., 1948. Az elevenszülő fogaspontyok (Poecilidae) előfordulása hazánkban. Author’s publishing, Budapest, 16 pp.Google Scholar
  49. Wurtsbaugh, W. A. & J. J. Cech, 1983. Growth and activity of juvenile mosquitofish: temperature and ration effects. Transactions of the American Fisheries Society 112: 653–660.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • András Specziár
    • 1
  1. 1.Balaton Limnological Research Institute of the Hungarian Academy of Sciences

Personalised recommendations