Advertisement

Hydrobiologia

, Volume 520, Issue 1–3, pp 199–205 | Cite as

Effects of elevation, wave exposure, and year on the proportion of gametophytes and tetrasporophytes in Mazzaella parksii (Rhodophyta, Gigartinaceae) populations

  • Ricardo Scrosati
  • Benita Mudge
Note

Abstract

We investigated the effects of elevation, wave exposure, and year on the proportion of gametophytes and tetrasporophytes in populations of the intertidal red seaweed Mazzaella parksii (= M. cornucopiae, Gigartinaceae) from the Pacific coast of Canada. In July 2002, we determined the life-history phase of 864 frond samples from four populations from Barkley Sound, using the resorcinol-acetal test. For these populations, gametophytes were significantly more numerous than tetrasporophytes, and the proportion of gametophytes was significantly higher at higher elevations. The proportion of gametophytes varied directly (although less markedly) with the degree of wave exposure, but significance could not be assessed for this factor. All of these patterns were spatially consistent, as they held for two different rocky points with similar physical characteristics. One of these points had also been surveyed in 1994-1995, which allows us to conclude that the population-wise gametophyte predominance and the positive relationship between elevation and the proportion of gametophytes are stable features of this species in this area. However, the average proportion of gametophytes was similar between the studied levels of wave exposure in 1994–1995; such a difference revealed as non-significant when data were combined with those for 2002. This suggests that wave exposure is not important in determining the proportion of life-history phases for this species. Comparisons with other species are done in search of general patterns for the Gigartinaceae.

elevation gametophyte Gigartinaceae Mazzaella tetrasporophyte wave exposure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, J. P., C. H. Baxter, R. D. Sagarin & S. E. Gilman, 1995. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267: 672–675.PubMedGoogle Scholar
  2. Bolton, J. J. & M. A. P. Joska, 1993. Population studies on a South African carrageenophyte: Iridaea capensis (Gigartinaceae, Rhodophyta). Hydrobiologia 260/261: 191–195.CrossRefGoogle Scholar
  3. Craigie, J. S. & J. D. Pringle, 1978. Spatial distribution of tetrasporophytes and gametophytes in four Maritime populations of Chondrus crispus. Canadian Journal of Botany 56: 2910–2914.CrossRefGoogle Scholar
  4. DeWreede, R. E. & L. G. Green, 1990. Patterns of gametophyte dominance of Iridaea splendens (Rhodophyta) in Vancouver Harbour, Vancouver, British Columbia, Canada. Journal of Applied Phycology 2: 27–34.Google Scholar
  5. Dyck, L. J. & R. E. DeWreede, 1995. Patterns of seasonal demographic change in the alternate isomorphic stages of Mazzaella splendens (Gigartinales, Rhodophyta). Phycologia 34: 390–395.Google Scholar
  6. Dyck, L., R. E. DeWreede & D. Garbary, 1985. Life history phases in Iridaea cordata (Gigartinaceae): relative abundance and distribution from British Columbia to California. Japanese Journal of Phycology 33: 225–232.Google Scholar
  7. Eriksson, O. & L. Jerling, 1990. Hierarchical selection and risk spreading in clonal plants. In van Groenendael, J. & H. de Kroon (eds), Clonal Growth in Plants: Regulation and Function. SPB Academic Publishers, The Hague: 79–94.Google Scholar
  8. Garbary, D. J. & R. E. DeWreede, 1988. Life history phases in natural populations of Gigartinaceae (Rhodophyta): quantification using resorcinol. In Lobban, C. S., D. J. Chapman & B. P. Kremer (eds), Experimental Phycology. A Laboratory Manual. Cambridge University Press, Cambridge: 174–178.Google Scholar
  9. Graham, L. E. & L. W. Wilcox, 2000. Algae. Prentice Hall, Upper Saddle River, 640 pp.Google Scholar
  10. Haddad, N. M., D. Tilman & J. M. H. Knops, 2002. Long-term oscillations in grassland productivity induced by drought. Ecology Letters 5: 110–120.CrossRefGoogle Scholar
  11. Hannach, G. & B. Santelices, 1985. Ecological differences between the isomorphic reproductive phases of two species of Iridaea (Rhodophyta: Gigartinales). Marine Ecology Progress Series 22: 291–303.Google Scholar
  12. Hansen, J. E. & W. T. Doyle, 1976. Ecology and natural history of Iridaea cordata (Rhodophyta; Gigartinaceae): population structure. Journal of Phycology 12: 273–278.Google Scholar
  13. Harley, C. D. G., 2003. Abiotic stress and herbivory interact to set range limits across a two-dimensional stress gradient. Ecology 84: 1477–1488.Google Scholar
  14. Heaven, C. & R. Scrosati, 2003. Feeding preference of Littorina snails (Gastropoda) for bleached and photosynthetic tissues of the seaweed Mazzaella parksii (Rhodophyta). Hydrobiologia, in press.Google Scholar
  15. Howell, D. C., 1992. Statistical Methods for Psychology. Duxbury Press, Belmont, 693 pp.Google Scholar
  16. Hughey, J. R., P. C. Silva & M. H. Hommersand, 2001. Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. Journal of Phycology 37: 1091–1109.CrossRefGoogle Scholar
  17. Inchausti, P. & J. Halley, 2001. Investigating long-term ecological variability using the global population dynamics database. Science 293: 655–657.PubMedGoogle Scholar
  18. Johnson, A. S., 2001. Drag, drafting, and mechanical interactions in canopies of the red alga Chondrus crispus. Biological Bulletin 201: 126–135.PubMedGoogle Scholar
  19. Kim, J. H. & R. E. DeWreede, 1996. Distribution and feeding preference of a high intertidal littorinid. Botanica Marina 39: 561–569.CrossRefGoogle Scholar
  20. Lazo, M. L., M. Greenwell & J. McLachlan, 1989. Population structure of Chondrus crispus Stackhouse (Gigartinaceae, Rhodophyta) along the coast of Prince Edward Island, Canada: distribution of gametophytic and sporophytic fronds. Journal of Experimental Marine Biology and Ecology 126: 45–58.CrossRefGoogle Scholar
  21. Mathieson, A. C. & R. L. Burns, 1975. Ecological studies of economic red algae. V. Growth and reproduction of natural and harvested populations of Chondrus crispus Stackhouse in New Hampshire. Journal of Experimental Marine Biology and Ecology 17: 137–156.Google Scholar
  22. Morley, T. L., J. J. Bolton & R. J. Anderson, 2003. Phase dominance and reproductive characteristics in two co-occurring Rhodophyta from the west coast of South Africa. In Chapman, A. R. O., R. J. Anderson, V. J. Vreeland & I. R. Davison (eds), Proceedings of the XVIIth International Seaweed Symposium, Cape Town, South Africa, 28 January-2 February 2001. Oxford University Press, Oxford: 365–371.Google Scholar
  23. Mudge, B. & R. Scrosati, 2003. Effects of wave exposure on the proportion of gametophytes and tetrasporophytes of Mazzaella oregona (Rhodophyta: Gigartinales) from Pacific Canada. Journal of the Marine Biological Association of the United Kingdom 83: 701–704.CrossRefGoogle Scholar
  24. Olson, A. M., 1985. Early Succession in Beds of the Red Alga Iridaea cornucopiae Post. & Rupr. (Gigartinaceae): Alternate Pathways. M.Sc. thesis, Oregon State University, 86 pp.Google Scholar
  25. Olson, A. M., 1990. Algal life history stages respond differently to desiccation and herbivory. Bulletin of the Ecological Society of America (Suppl.) 71: 274.Google Scholar
  26. Otaíza, R. D., S. R. Abades & A. J. Brante, 2001. Seasonal changes in abundance and shifts in dominance of life history stages of the carrageenophyte Sarcothalia crispata (Rhodophyta, Gigartinales) in south-central Chile. Journal of Applied Phycology 13: 161–171.CrossRefGoogle Scholar
  27. Phillips, B., 1994. Ecological Differences between the Isomorphic Phases of Mazzaella lilacina (Rhodophyta, Gigartinaceae): 1) Spore Production, 2) Recruitment Specialization, 3) Resistance to Removal by Wave Action. M.Sc. thesis, University of British Columbia, Vancouver, 113 pp.Google Scholar
  28. Santelices, B., J. A. Correa, D. Aedo, V. Flores, M. Hormazábal & P. Sánchez, 1999. Convergent biological processes in coalescing Rhodophyta. Journal of Phycology 35: 1127–1149.Google Scholar
  29. Santelices, B., D. Aedo, M. Hormazábal & V. Flores, 2003. Field testing of inter-and intraspecific coalescence among midintertidal red algae. Marine Ecology Progress Series 250: 91–103.Google Scholar
  30. Scrosati, R., 1998a. Population structure and dynamics of the clonal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from Barkley Sound, Pacific coast of Canada. Botanica Marina 41: 483–493.Google Scholar
  31. Scrosati, R., 1998b. Mechanisms of recolonization of the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) after disturbances. Canadian Journal of Botany 76: 1717–1724.Google Scholar
  32. Scrosati, R., 2001. Interannual variation of the abundance of Mazzaella cornucopiae (Rhodophyta, Gigartinales) from Pacific Canada in relation to changes in abiotic variables. Journal of Applied Phycology 13: 457–460.Google Scholar
  33. Scrosati, R., 2002. An updated definition of genet applicable to clonal seaweeds, bryophytes, and vascular plants. Basic and Applied Ecology 3: 97–99.Google Scholar
  34. Scrosati, R. & R. E. DeWreede, 1997. Dynamics of the biomassdensity relationship and frond biomass inequality for Mazzaella cornucopiae (Rhodophyta, Gigartinaceae): implications for the understanding of frond interactions. Phycologia 36: 506–516.CrossRefGoogle Scholar
  35. Scrosati, R. & R. E. DeWreede, 1998. The impact of frond crowding on frond bleaching in the clonal intertidal alga Mazzaella cornucopiae (Rhodophyta, Gigartinaceae) from British Columbia, Canada. Journal of Phycology 34: 228–232.Google Scholar
  36. Scrosati, R. & R. E. DeWreede, 1999. Demographic models to simulate the stable ratio between ecologically similar gametophytes and tetrasporophytes in populations of the Gigartinaceae (Rhodophyta). Phycological Research 47: 153–157.CrossRefGoogle Scholar
  37. Scrosati, R. & B. Mudge, 2004. Persistence of gametophyte predominance in Chondrus crispus (Rhodophyta, Gigartinaceae) from Nova Scotia after 12 years. Hydrobiologia, in press.Google Scholar
  38. Scrosati, R. & E. Servière-Zaragoza, 2000. Ramet dynamics for the clonal seaweed Pterocladiella capillacea (Rhodophyta, Gelidiales): a comparison with Chondrus crispus and with Mazzaella cornucopiae (Gigartinales). Journal of Phycology 36: 1061–1068.Google Scholar
  39. Shaughnessy, F. J. & R. E. DeWreede, 1991. Reliability of the resorcinol method for identifying isomorphic phases in the Gigartinaceae (Rhodophyta). Journal of Applied Phycology 3: 121–127.Google Scholar
  40. Shaughnessy, F. J., R. E. DeWreede & E. C. Bell, 1996. Consequences of morphology and tissue strength to blade survivorship of two closely related Rhodophyta species. Marine Ecology Progress Series 136: 257–266.Google Scholar
  41. Sousa, W. P., 2001. Natural disturbance and the dynamics of marine benthic communities. In Bertness, M. D., S. D. Gaines & M. E. Hay (eds), Marine Community Ecology. Sinauer Associates, Sunderland: 85–130.Google Scholar
  42. Thornber, C. S. & S. D. Gaines, 2003. Spatial and temporal variation of haploids and diploids in populations of four congeners of the marine alga Mazzaella. Marine Ecology Progress Series 258: 65–77.Google Scholar
  43. Underwood, A. J., M. G. Chapman & S. D. Connell, 2000. Observations in ecology: you can’t make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology 250: 97–115.CrossRefPubMedGoogle Scholar
  44. Waaland, J. R., 1975. Differences in carrageenan in gametophytes and tetrasporophytes of red algae. Phytochemistry 14: 1359–1362.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ricardo Scrosati
    • 1
  • Benita Mudge
    • 1
  1. 1.Bamfield Marine Sciences CentreBamfieldCanada

Personalised recommendations